Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 1, Pages 534–547
DOI: https://doi.org/10.33048/semi.2021.18.039
(Mi semr1379)
 

Real, complex and functional analysis

Ergodic theorems in Banach ideals of compact operators

A. N. Azizov, V. I. Chilin

National University of Uzbekistan, 4, Universitet str., Tashkent, 100174, Uzbekistan
References:
Abstract: Let $\mathcal H$ be an infinite-dimensional Hilbert space, and let $\mathcal B(\mathcal H)$ ($\mathcal K(\mathcal H)$) be the $C^\star$–algebra of all bounded (compact) linear operators in $\mathcal H$. Let $(E,\|\cdot\|_E)$ be a fully symmetric sequence space. If $\{s_n(x)\}_{n=1}^\infty$ are the singular values of $x\in\mathcal K(\mathcal H)$, let $\mathcal C_E=\{x\in\mathcal K(\mathcal H): \{s_n(x)\}\in E\}$ with $\|x\|_{\mathcal C_E}=\|\{s_n(x)\}\|_E$, $x\in\mathcal C_E$, be the Banach ideal of compact operators generated by $E$. We show that the averages $A_n(T)(x)=\frac1{n+1}\sum\limits_{k = 0}^n T^k(x) $ converge uniformly in $\mathcal C_E$ for any Dunford-Schwartz operator $T$ and $x\in\mathcal C_E$. Besides, if $0\leq x\in\mathcal B(\mathcal H)\setminus\mathcal K(\mathcal H)$, there exists a Dunford-Schwartz operator $T$ such that the sequence $\{A_n(T)(x)\}$ does not converge uniformly. We also show that the averages $A_n(T)$ converge strongly in $(\mathcal C_E, \|\cdot\|_{\mathcal C_E})$ if and only if $E$ is separable and $E \neq l^1$ as sets.
Keywords: symmetric sequence space, Banach ideal of compact operators, Dunford-Schwartz operator, individual ergodic theorem, mean ergodic theorem.
Received February 26, 2021, published May 21, 2021
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: English
Citation: A. N. Azizov, V. I. Chilin, “Ergodic theorems in Banach ideals of compact operators”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 534–547
Citation in format AMSBIB
\Bibitem{AziChi21}
\by A.~N.~Azizov, V.~I.~Chilin
\paper Ergodic theorems in Banach ideals of compact operators
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 1
\pages 534--547
\mathnet{http://mi.mathnet.ru/semr1379}
\crossref{https://doi.org/10.33048/semi.2021.18.039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000674346800001}
Linking options:
  • https://www.mathnet.ru/eng/semr1379
  • https://www.mathnet.ru/eng/semr/v18/i1/p534
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :67
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024