Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 1, Pages 456–463
DOI: https://doi.org/10.33048/semi.2021.18.031
(Mi semr1372)
 

Discrete mathematics and mathematical cybernetics

All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices

Ts. Ch.-D. Batueva, O. V. Borodin, A. O. Ivanova, D. V. Nikiforov

Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
References:
Abstract: A $3$-path $uvw$ is an $(i,j,k)$-path if $d(u)\le i$, $d(v)\le j$, and $d(w)\le k$, where $d(x)$ is the degree of a vertex $x$. It is well-known that each $3$-polytope has a vertex of degree at most $5$, called minor. A description of $3$-paths in a $3$-polytope is minor or major if the central item of each its triplet is at most 5 or at least $6$, respectively. Back in 1922, Franklin proved that each $3$-polytope with minimum degree 5 has a $(6,5,6)$-path, which description is tight. Recently, Borodin and Ivanova extended Franklin's theorem by producing all the ten tight minor descriptions of $3$-paths in the class $\mathbf{P_4}$ of $3$-polytopes with minimum degree at least $4$. In 2016, Borodin and Ivanova proved that each polytope with minimum degree $5$ has a $(5,6,6)$-path, and there exists no tight description of $3$-paths in this class of $3$-polytopes other than $\{(6,5,6)\}$ and $\{(5,6,6)\}$.
The purpose of this paper is to prove that there exist precisely the following four major tight descriptions of $3$-paths in $\mathbf{ P_4}$: $\{(4,9,4),(4,7,5),(5,6,6)\}$, $\{(4,9,4),(5,7,6)\}$, $\{(4,9,5),(5,6,6)\}$, and $\{(5,9,6)\}$.
Keywords: plane graph, $3$-polytope, structural properties, $3$-path, tight description.
Funding agency Grant number
Russian Science Foundation 16-11-10054
This research was funded by the Russian Science Foundation (grant 16-11-10054).
Received March 25, 2021, published April 22, 2021
Bibliographic databases:
Document Type: Article
UDC: 519.172.2
MSC: 05C75
Language: English
Citation: Ts. Ch.-D. Batueva, O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 456–463
Citation in format AMSBIB
\Bibitem{BatBorIva21}
\by Ts.~Ch.-D.~Batueva, O.~V.~Borodin, A.~O.~Ivanova, D.~V.~Nikiforov
\paper All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 1
\pages 456--463
\mathnet{http://mi.mathnet.ru/semr1372}
\crossref{https://doi.org/10.33048/semi.2021.18.031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000651770100001}
Linking options:
  • https://www.mathnet.ru/eng/semr1372
  • https://www.mathnet.ru/eng/semr/v18/i1/p456
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025