Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 1, Pages 423–432
DOI: https://doi.org/10.33048/semi.2021.18.029
(Mi semr1370)
 

Real, complex and functional analysis

A version of Schwarz's lemma for mappings with weighted bounded distortion

M. V. Tryamkin

Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
References:
Abstract: We consider the class of mappings generalizing qusiregular mappings. Every mapping from this class is defined in a domain of Euclidean $n$-space and possesses the following properties: it is open, continuous, and discrete, it belongs locally to the Sobolev class $W^{1}_{q}$, it has finite distortion and nonnegative Jacobian, and its function of weighted $(p,q)$-distortion is integrable to a certian power depending on $p$ and $q$, where $n-1<q\leqslant p<\infty$. We obtain an analog of Schwarz's lemma for such mappings provided that $p\geqslant n$. The technique used is based on the spherical symmetrization procedure and the notion of Grötzsch condenser.
Keywords: capacitary estimates, Grötzsch condenser, mappings with weighted bounded distortion, Schwarz's lemma, spherical symmetrization.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0006
The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (Project no. 0314-2019-0006).
Received March 2, 2021, published April 18, 2021
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 30CX65
Language: English
Citation: M. V. Tryamkin, “A version of Schwarz's lemma for mappings with weighted bounded distortion”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 423–432
Citation in format AMSBIB
\Bibitem{Try21}
\by M.~V.~Tryamkin
\paper A version of Schwarz's lemma for mappings with weighted bounded distortion
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 1
\pages 423--432
\mathnet{http://mi.mathnet.ru/semr1370}
\crossref{https://doi.org/10.33048/semi.2021.18.029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000641270900001}
Linking options:
  • https://www.mathnet.ru/eng/semr1370
  • https://www.mathnet.ru/eng/semr/v18/i1/p423
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024