|
Real, complex and functional analysis
Some remarks on rotation theorems for complex polynomials
V. N. Dubininab a Far-Eastern Federal University, 8, Sukhanov str., Vladivostok, 690950, Russia
b Institute for Applied Mathematics, FEBRAS, 7, Radio str., Vladivostok, 690041, Russia
Abstract:
For any complex polynomial $P(z)=c_0+c_1z+...+c_nz^n, c_n\not=0,$ having all its zeros in the unit disk $|z|\le 1,$ we consider the behavior of the function (arg$P(e^{i\theta}))'_{\theta}$ when the real argument $\theta$ changes. We give some sharp estimates of this function involving of the values of $P(e^{i\theta}),$ arg$P(e^{i\theta})$ or the coefficients $c_k, k=0,1,n-1,n.$
Keywords:
complex polynomials, rotation theorems, inequalities, boundary Schwarz lemma, rational functions.
Received February 16, 2021, published April 9, 2021
Citation:
V. N. Dubinin, “Some remarks on rotation theorems for complex polynomials”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 369–376
Linking options:
https://www.mathnet.ru/eng/semr1367 https://www.mathnet.ru/eng/semr/v18/i1/p369
|
|