Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 1, Pages 369–376
DOI: https://doi.org/10.33048/semi.2021.18.026
(Mi semr1367)
 

Real, complex and functional analysis

Some remarks on rotation theorems for complex polynomials

V. N. Dubininab

a Far-Eastern Federal University, 8, Sukhanov str., Vladivostok, 690950, Russia
b Institute for Applied Mathematics, FEBRAS, 7, Radio str., Vladivostok, 690041, Russia
References:
Abstract: For any complex polynomial $P(z)=c_0+c_1z+...+c_nz^n, c_n\not=0,$ having all its zeros in the unit disk $|z|\le 1,$ we consider the behavior of the function (arg$P(e^{i\theta}))'_{\theta}$ when the real argument $\theta$ changes. We give some sharp estimates of this function involving of the values of $P(e^{i\theta}),$ arg$P(e^{i\theta})$ or the coefficients $c_k, k=0,1,n-1,n.$
Keywords: complex polynomials, rotation theorems, inequalities, boundary Schwarz lemma, rational functions.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00018
This work was supported by the Russian Basic Research Fund (grant number 20-01-00018).
Received February 16, 2021, published April 9, 2021
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 30A10
Language: English
Citation: V. N. Dubinin, “Some remarks on rotation theorems for complex polynomials”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 369–376
Citation in format AMSBIB
\Bibitem{Dub21}
\by V.~N.~Dubinin
\paper Some remarks on rotation theorems for complex polynomials
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 1
\pages 369--376
\mathnet{http://mi.mathnet.ru/semr1367}
\crossref{https://doi.org/10.33048/semi.2021.18.026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000641268100001}
Linking options:
  • https://www.mathnet.ru/eng/semr1367
  • https://www.mathnet.ru/eng/semr/v18/i1/p369
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025