Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 1, Pages 332–337
DOI: https://doi.org/10.33048/semi.2021.18.022
(Mi semr1363)
 

This article is cited in 2 scientific papers (total in 2 papers)

Differentical equations, dynamical systems and optimal control

On a nonlinear differential equation in a Banach space

M. I. Besova, V. I. Kachalov

National Research University «MPEI», 14, Krasnokazarmennaya str., Moscow, 111250, Russia
Full-text PDF (302 kB) Citations (2)
References:
Abstract: An Navier-Stokes type equation is considered for which a generalized solution is constructed in the form of a series in powers of a specially introduced parameter and its convergence is proved. An example of a mixed problem for the Burgers equation is given.
Keywords: equations of Navier-Stokes type, Burgers equation, generalized solution, holomorphic dependence of a solution on a parameter.
Received February 17, 2020, published March 30, 2021
Bibliographic databases:
Document Type: Article
UDC: 517.956.8
Language: Russian
Citation: M. I. Besova, V. I. Kachalov, “On a nonlinear differential equation in a Banach space”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 332–337
Citation in format AMSBIB
\Bibitem{BesKac21}
\by M.~I.~Besova, V.~I.~Kachalov
\paper On a nonlinear differential equation in a Banach space
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 1
\pages 332--337
\mathnet{http://mi.mathnet.ru/semr1363}
\crossref{https://doi.org/10.33048/semi.2021.18.022}
Linking options:
  • https://www.mathnet.ru/eng/semr1363
  • https://www.mathnet.ru/eng/semr/v18/i1/p332
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :68
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024