Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 1, Pages 282–318
DOI: https://doi.org/10.33048/semi.2021.18.020
(Mi semr1361)
 

This article is cited in 4 scientific papers (total in 4 papers)

Differentical equations, dynamical systems and optimal control

Multiscale analysis of a model problem of a thermoelastic body with thin inclusions

S. A. Sazhenkovab, I. V. Frankinaca, A. I. Furtsevac, P. V. Gilevd, A. G. Goryninb, O. G. Goryninae, V. M. Karnaevb, E. I. Leonovad

a Lavrentyev Institute of Hydrodynamics, 15, Acad. Lavrentyeva ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., 630090 Novosibirsk, Russia
c Sobolev Institute of Mathematics, 4, Acad. Koptyuga ave., Novosibirsk, 630090, Russia
d Laboratory for Mathematical and Computer Modeling in Natural and Industrial Systems, Institute of Mathematics & Information Technologies, Altai State University, 61, Lenina ave., Barnaul, 656049 Russia
e Ècole Des Pontes et Chaussees, 6-8 Avenue Blaise Pascal, Cité Descartes, 77455 Champs-sur-Marne, Marne la Vallée cedex 2, France
References:
Abstract: A model statical problem for a thermoelastic body with thin inclusions is studied. This problem incorporates two small positive parameters $\delta$ and $\varepsilon$, which describe the thickness of an individual inclusion and the distance between two neighboring inclusions, respectively. Relying on the variational formulation of the problem, by means of the modern methods of asymptotic analysis, we investigate the behavior of solutions as $\delta$ and $\varepsilon$ tend to zero. As the result, we construct two models corresponding to the limiting cases. At first, as $\delta \to 0$, we derive a limiting model in which inclusions are thin (of zero diameter). Then, from this limiting model, as $\varepsilon \to 0$, we derive a homogenized model, which describes effective behavior on the macroscopic scale, i.e., on the scale where there is no need to take into account each individual inclusion. The limiting passage as $\varepsilon \to 0$ is based on the use of homogenization theory. The final section of the article presents a series of numerical experiments for the established limiting models.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1613
The work was carried out with the financial support from the Mathematical Center in Akademgorodok, Novosibirsk, Russia (Agreement with the Ministry of Science and Higher Education of the Russian Federation no. 075-15-2019-1613).
Received February 29, 2020, published March 23, 2021
Bibliographic databases:
Document Type: Article
UDC: 517.956.2:517.955.8
Language: English
Citation: S. A. Sazhenkov, I. V. Frankina, A. I. Furtsev, P. V. Gilev, A. G. Gorynin, O. G. Gorynina, V. M. Karnaev, E. I. Leonova, “Multiscale analysis of a model problem of a thermoelastic body with thin inclusions”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 282–318
Citation in format AMSBIB
\Bibitem{SazFanFur21}
\by S.~A.~Sazhenkov, I.~V.~Frankina, A.~I.~Furtsev, P.~V.~Gilev, A.~G.~Gorynin, O.~G.~Gorynina, V.~M.~Karnaev, E.~I.~Leonova
\paper Multiscale analysis of a model problem of a thermoelastic body with thin inclusions
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 1
\pages 282--318
\mathnet{http://mi.mathnet.ru/semr1361}
\crossref{https://doi.org/10.33048/semi.2021.18.020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000641264700001}
Linking options:
  • https://www.mathnet.ru/eng/semr1361
  • https://www.mathnet.ru/eng/semr/v18/i1/p282
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :135
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024