Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 1, Pages 136–159
DOI: https://doi.org/10.33048/semi.2021.18.012
(Mi semr1353)
 

Real, complex and functional analysis

Removable sets for Sobolev spaces with Muckenhoupt $A_1$-weight

V. A. Shlykab

a Vladivostok Branch of Russian Customs Academy, 16v, Strelkovaya str., Vladivostok, 690034, Russia
b Institute of Applied Mathematics, Vladivostok Branch of the RAS, 7, Radio str., Vladivostok, 690041, Russia
References:
Abstract: Let $\Omega$ be an open set in $R^n$, $n\ge2$, and $E$ be a relatively closed subset of $\Omega$. In this paper we obtain a criterion of equality $L^1_{1,\omega}(\Omega\setminus E)=L^1_{1,\omega}(\Omega)$ in terms of $E$ as an $NC_{1,\omega}$-set in $\Omega$ with $A_1$-weight $\omega$. In addition, we establish exact characterizations of $NC_{1,\omega}$-sets in terms of $NED_{1,\omega}$-sets and of the $(1,\omega)$-girth condition. In the case $\omega\equiv1$, these results complete the studies of Vodop'yanov and Gol'dstein on removable sets for $L^1_p(\Omega)$, $p\in(1,+\infty)$.
Keywords: Sobolev space, capacity and modulus of condenser, Muckenhoupt weight, removable set.
Received September 9, 2020, published March 3, 2021
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 46E35, 31C45
Language: English
Citation: V. A. Shlyk, “Removable sets for Sobolev spaces with Muckenhoupt $A_1$-weight”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 136–159
Citation in format AMSBIB
\Bibitem{Shl21}
\by V.~A.~Shlyk
\paper Removable sets for Sobolev spaces with Muckenhoupt $A_1$-weight
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 1
\pages 136--159
\mathnet{http://mi.mathnet.ru/semr1353}
\crossref{https://doi.org/10.33048/semi.2021.18.012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000625962700001}
Linking options:
  • https://www.mathnet.ru/eng/semr1353
  • https://www.mathnet.ru/eng/semr/v18/i1/p136
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025