|
Differentical equations, dynamical systems and optimal control
Existence of a solution to a nonlinear elliptic equation in a Musielak–Orlicz–Sobolev space for an unbounded domain
L. M. Kozhevnikovaab, A. P. Kashnikovaa a Sterlitamak Branch of Bashkir State University, 37, Lenin ave., Sterlitamak, 453103, Russia
b Elabuga Branch of Kazan (Volga Region) Federal University, 89, Kazanskaya str., Elabuga, 423600, Russia
Abstract:
We consider a class of second-order elliptic equations with nonlinearities defined by generalized $N$-functions. The existence of a weak solution to the Dirichlet problem in a reflexive Musielak–Orlicz–Sobolev space is proved for an arbitrary unbounded domain.
Keywords:
Musielak–Orlicz-Sobolev space, $\Delta_2$-condition, Dirichlet problem, existence of a solution, pseudomonotone operator, unbounded domain.
Citation:
L. M. Kozhevnikova, A. P. Kashnikova, “Existence of a solution to a nonlinear elliptic equation in a Musielak–Orlicz–Sobolev space for an unbounded domain”, Sib. Èlektron. Mat. Izv., 17 (2020), 2055–2067
Linking options:
https://www.mathnet.ru/eng/semr1331 https://www.mathnet.ru/eng/semr/v17/p2055
|
Statistics & downloads: |
Abstract page: | 190 | Full-text PDF : | 70 | References: | 22 |
|