Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 1580–1587
DOI: https://doi.org/10.33048/semi.2020.17.110
(Mi semr1304)
 

This article is cited in 2 scientific papers (total in 2 papers)

Geometry and topology

Symmetries of 3-polytopes with fixed edge lengths

E. A. Morozov

National Research University Higher School of Economics, 6, Usacheva str., Moscow, 119048, Russia
Full-text PDF (315 kB) Citations (2)
References:
Abstract: We consider an interesting class of combinatorial symmetries of polytopes which we call edge-length preserving combinatorial symmetries. These symmetries not only preserve the combinatorial structure of a polytope but also map each edge of the polytope to an edge of the same length. We prove a simple sufficient condition for a polytope to realize all edge-length preserving combinatorial symmetries by isometries of ambient space. The proof of this condition uses Cauchy's rigidity theorem in an unusual way.
Keywords: polytope, isometry, edge-length preserving combinatorial symmetry, circle pattern.
Received July 4, 2020, published October 12, 2020
Bibliographic databases:
Document Type: Article
UDC: 514.172.45
MSC: 52B15
Language: English
Citation: E. A. Morozov, “Symmetries of 3-polytopes with fixed edge lengths”, Sib. Èlektron. Mat. Izv., 17 (2020), 1580–1587
Citation in format AMSBIB
\Bibitem{Mor20}
\by E.~A.~Morozov
\paper Symmetries of 3-polytopes with fixed edge lengths
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 1580--1587
\mathnet{http://mi.mathnet.ru/semr1304}
\crossref{https://doi.org/10.33048/semi.2020.17.110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000583302200001}
Linking options:
  • https://www.mathnet.ru/eng/semr1304
  • https://www.mathnet.ru/eng/semr/v17/p1580
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:152
    Full-text PDF :65
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024