Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 1571–1579
DOI: https://doi.org/10.33048/semi.2020.17.109
(Mi semr1303)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

On the Wedderburn's principal theorem in right alternative superalgebras of capacity $1$

O. V. Shashkov

Financial University under the Government of the Russian Federation, 49, Leningradsky ave., Moscow, 125993, Russia
Full-text PDF (368 kB) Citations (1)
References:
Abstract: The Wedderburn's principal theorem is proved for finite dimensional right alternative superalgebras under the following restrictions: 1) the even part is representable as the sum of a simple noncommutative subalgebra and radical; 2) the superalgebra is an alternative bimodule over its even part.
Keywords: right alternative superalgebra, nilpotent radical.
Received December 8, 2019, published September 29, 2020
Bibliographic databases:
Document Type: Article
UDC: 512.554.5
MSC: 17A70, 17D15
Language: Russian
Citation: O. V. Shashkov, “On the Wedderburn's principal theorem in right alternative superalgebras of capacity $1$”, Sib. Èlektron. Mat. Izv., 17 (2020), 1571–1579
Citation in format AMSBIB
\Bibitem{Sha20}
\by O.~V.~Shashkov
\paper On the Wedderburn's principal theorem in right alternative superalgebras of capacity~$1$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 1571--1579
\mathnet{http://mi.mathnet.ru/semr1303}
\crossref{https://doi.org/10.33048/semi.2020.17.109}
Linking options:
  • https://www.mathnet.ru/eng/semr1303
  • https://www.mathnet.ru/eng/semr/v17/p1571
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024