Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 1552–1570
DOI: https://doi.org/10.33048/semi.2020.17.108
(Mi semr1302)
 

This article is cited in 2 scientific papers (total in 2 papers)

Real, complex and functional analysis

Weighted Sobolev spaces, capacities and exceptional sets

I. M. Tarasova, V. A. Shlyk

Vladivostok Branch of Russian Customs Academy, 16v, Strelkovaya str., Vladivostok, 690034, Russia
Full-text PDF (463 kB) Citations (2)
References:
Abstract: We consider the weighted Sobolev space $W^{m,p}_\omega (\Omega)$, where $\Omega$ is an open subset of $R^n$, $n\ge2$, and $\omega$ is a Muckenhoupt $A_p$-weight on $R^n$, $1\le p<\infty$, $m\in\mathbb N$. For the equalities $W^{m,p}_\omega (\Omega\setminus E)=W^{m,p}_\omega(\Omega)$, $W^{m,p}_\omega(\Omega\setminus E)=W^{m,p}_\omega(\Omega)$ to hold, conditions are obtained in terms of $E$ as a set of zero $(p,m,\omega)$-capacity, or an $NC_{p,\omega}$-set for the first equality. For the equality $W^{m,p}(\Omega)=W^{m,p}(\Omega)$, the conditions are established for $R^n \setminus\Omega$ as a set of zero $(p,m,\omega)$-capacity. Similar results are partially true for $W^m_{p,\omega}(\Omega)$, $L^m_{p,\omega}(\Omega)$.
Keywords: Sobolev space, capacity, Muckenhoupt weight, exceptional set.
Received August 9, 2019, published September 28, 2020
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 46E35, 31C45
Language: English
Citation: I. M. Tarasova, V. A. Shlyk, “Weighted Sobolev spaces, capacities and exceptional sets”, Sib. Èlektron. Mat. Izv., 17 (2020), 1552–1570
Citation in format AMSBIB
\Bibitem{TarShl20}
\by I.~M.~Tarasova, V.~A.~Shlyk
\paper Weighted Sobolev spaces, capacities and exceptional sets
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 1552--1570
\mathnet{http://mi.mathnet.ru/semr1302}
\crossref{https://doi.org/10.33048/semi.2020.17.108}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000575249700001}
Linking options:
  • https://www.mathnet.ru/eng/semr1302
  • https://www.mathnet.ru/eng/semr/v17/p1552
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024