Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 1313–1321
DOI: https://doi.org/10.33048/semi.2020.17.097
(Mi semr1291)
 

Real, complex and functional analysis

Von Neumann's ergodic theorem and Fejer sums for signed measures on the circle

A. G. Kachurovskiia, M. N. Lapshtaevb, A. J. Khakimbaevb

a Sobolev Institute of Mathematics, 4, Academician Koptyug ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
References:
Abstract: The Fejer sums for measures on the circle and the norms of the deviations from the limit in von Neumann's ergodic theorem are calculated, in fact, using the same formulas (by integrating the Fejer kernels) — and so, this ergodic theorem is a statement about the asymptotics of the Fejer sums at zero for the spectral measure of the corresponding dynamical system. It made it possible, having considered the integral Holder condition for signed measures, to prove a theorem that unifies both following well-known results: classical S.N. Bernstein's theorem on polynomial deviations of the Fejer sums for Holder functions — and theorem about polynomial rates of convergence in von Neumann's ergodic theorem.
Keywords: deviations of Fejer sums, rates of convergence in von Neumann's ergodic theorem, integral Holder condition.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0005
Received May 12, 2020, published September 11, 2020
Bibliographic databases:
Document Type: Article
UDC: 517.5, 517.987
MSC: 37A30, 42A16
Language: Russian
Citation: A. G. Kachurovskii, M. N. Lapshtaev, A. J. Khakimbaev, “Von Neumann's ergodic theorem and Fejer sums for signed measures on the circle”, Sib. Èlektron. Mat. Izv., 17 (2020), 1313–1321
Citation in format AMSBIB
\Bibitem{KacLapKha20}
\by A.~G.~Kachurovskii, M.~N.~Lapshtaev, A.~J.~Khakimbaev
\paper Von Neumann's ergodic theorem and Fejer sums for signed measures on the circle
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 1313--1321
\mathnet{http://mi.mathnet.ru/semr1291}
\crossref{https://doi.org/10.33048/semi.2020.17.097}
Linking options:
  • https://www.mathnet.ru/eng/semr1291
  • https://www.mathnet.ru/eng/semr/v17/p1313
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:225
    Full-text PDF :110
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024