|
Discrete mathematics and mathematical cybernetics
The nonexistence small $Q$-polynomial graphs of type (III)
A. A. Makhneva, M. M. Isakovab, A. A. Tokbaevab a N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 16, S.Kovalevskaya str., Yekaterinburg, 620990, Russia
b Kabardino-Balkarian State University named after H.M. Berbekov, 175, Chernyshevsky str., Nalchik, 360004, Russia
Abstract:
I.N. Belousov, A.A. Makhnev and M.S. Nirova found the description of $Q$-polynomial distance-regular graphs $\Gamma$ of diameter 3 such that $\Gamma_2$ and $\Gamma_3$ are strongly regular. Such graph has intersection array $\{t(c_2+1)+a_3,tc_2,a_3+1;1,c_2,t(c_2+1)\}$ and $(c_2+1)=a_3(a_3+1)/(t^2-a_3-1)$. $Q$-polynomial graph $\Gamma$ is the graph of type (I), if $a_3$ is devided by $c_2+1$, graph of type (II), if $a_3+1$ is devided by $c_2+1$, graph of type (III), if $a_3$ and $a_3+1$ does not devided by $c_2+1$.
In this paper it is proved that graph of type (III) with $t\le 6$ has intersection array $\{14,10,3;1,5,12\}$, $\{69,56,10;1,14,60\}$, $\{74,54,15;1, 9,60\}$, $\{87,66,16;1,11,72\}$, $\{119,100,15;1,20,105\}$ or $\{188,162,21;1, 27,168\}$.
Further it is proved that graphs of type (III) with intersection array $\{14,10,3;1,5,12\}$, $\{87,66,16;1,11,72\}$ and $\{188,162,21;1,27,168\}$ do not exist.
Keywords:
distance-regular graph, $Q$-polynomial graph, triple intersection numbers.
Received July 19, 2020, published September 7, 2020
Citation:
A. A. Makhnev, M. M. Isakova, A. A. Tokbaeva, “The nonexistence small $Q$-polynomial graphs of type (III)”, Sib. Èlektron. Mat. Izv., 17 (2020), 1270–1279
Linking options:
https://www.mathnet.ru/eng/semr1287 https://www.mathnet.ru/eng/semr/v17/p1270
|
Statistics & downloads: |
Abstract page: | 195 | Full-text PDF : | 30 | References: | 25 |
|