Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 1217–1226
DOI: https://doi.org/10.33048/semi.2020.17.090
(Mi semr1284)
 

This article is cited in 1 scientific paper (total in 1 paper)

Real, complex and functional analysis

Truncated Wiener-Hopf equation and matrix function factorization

A. F. Voronin

Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Full-text PDF (300 kB) Citations (1)
References:
Abstract: We will study relationship between a convolution equation of second kind on a finite interval and the Riemann —Hilbert boundary value problems. In addition, as a consequence of the results obtained in the work, Theorem 2 of the following article will be supplemented [3].
Keywords: Riemann boundary value problems, factorization of matrix functions, partial indices, stability, unique, convolution equation, truncated Wiener —Hopf equation.
Received September 17, 2019, published September 1, 2020
Bibliographic databases:
Document Type: Article
UDC: 517.544
MSC: 47A68
Language: English
Citation: A. F. Voronin, “Truncated Wiener-Hopf equation and matrix function factorization”, Sib. Èlektron. Mat. Izv., 17 (2020), 1217–1226
Citation in format AMSBIB
\Bibitem{Vor20}
\by A.~F.~Voronin
\paper Truncated Wiener-Hopf equation and matrix function factorization
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 1217--1226
\mathnet{http://mi.mathnet.ru/semr1284}
\crossref{https://doi.org/10.33048/semi.2020.17.090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000565687300001}
Linking options:
  • https://www.mathnet.ru/eng/semr1284
  • https://www.mathnet.ru/eng/semr/v17/p1217
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024