Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 1165–1182
DOI: https://doi.org/10.33048/semi.2020.17.088
(Mi semr1282)
 

This article is cited in 2 scientific papers (total in 2 papers)

Discrete mathematics and mathematical cybernetics

Linear perfect codes of infinite length over infinite fields

S. A. Malyugin

Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Full-text PDF (418 kB) Citations (2)
References:
Abstract: Let $F$ be a countable infinite field. Consider the space $F^{{\mathbb N}_0}$ of all sequences $u=(u_1,u_2,\dots)$, where $u_i\in F$ and $u_i=0$ except a finite set of indices $i\in\mathbb N$. A perfect $F$-valued code $C\subset F^{{\mathbb N}_0}$ of infinite length with Hamming distance $3$ can be defined in a standard way. For each $m\in\mathbb N$ ($m\geqslant 2$), we define a Hamming code $H_F^{(m)}$ using a checking matrix with $m$ rows. Also, we define one more Hamming code $H_F^{(\omega)}$ using a checking matrix with countable rows. Then we prove (Theorem 1) that all these Hamming codes are nonequivalent. In spite of this fact, Theorem 2 asserts that any perfect linear code $C\subset F^{{\mathbb N}_0}$ is affinely equivalent to one of the Hamming codes $H_F^{(m)}$, $m=2,3,\dots,\omega$. For the code $H_F^{(\omega)}$, we construct a continuum of nonequivalent checking matrices having countable rows (Theorem 4). Also, for this code, a countable family of nonequivalent checking matrices with columns having finite supports is constructed. Further, Theorem 8 asserts that a checking matrix with countable rows and columns with finite supports has a minimal checking submatrix.
Keywords: perfect $F$-valued code, code of infinite length, checking matrix, complete system of triples.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0017
The work of the author was carried out in the framework of the State Contract of the Sobolev (Project 0314-2019-0017).
Received December 11, 2019, published August 24, 2020
Bibliographic databases:
Document Type: Article
UDC: 519.72
MSC: 94B60
Language: English
Citation: S. A. Malyugin, “Linear perfect codes of infinite length over infinite fields”, Sib. Èlektron. Mat. Izv., 17 (2020), 1165–1182
Citation in format AMSBIB
\Bibitem{Mal20}
\by S.~A.~Malyugin
\paper Linear perfect codes of~infinite length over~infinite fields
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 1165--1182
\mathnet{http://mi.mathnet.ru/semr1282}
\crossref{https://doi.org/10.33048/semi.2020.17.088}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000565685600001}
Linking options:
  • https://www.mathnet.ru/eng/semr1282
  • https://www.mathnet.ru/eng/semr/v17/p1165
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024