Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 1013–1026
DOI: https://doi.org/10.33048/semi.2020.17.076
(Mi semr1270)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

A note on decidable categoricity and index sets

N. Bazhenov, M. Marchuk

Sobolev Institute of Mathematics, 4, Acad. Koptyug Ave., Novosibirsk, 630090, Russia
Full-text PDF (481 kB) Citations (1)
References:
Abstract: A structure $S$ is decidably categorical if $S$ has a decidable copy, and for any decidable copies $A$ and $B$ of $S$, there is a computable isomorphism from $A$ onto $B$. Goncharov and Marchuk proved that the index set of decidably categorical graphs is $\Sigma^0_{\omega+2}$ complete. In this paper, we isolate two familiar classes of structures $K$ such that the index set for decidably categorical members of $K$ has a relatively low complexity in the arithmetical hierarchy. We prove that the index set of decidably categorical real closed fields is $\Sigma^0_3$ complete. We obtain a complete characterization of decidably categorical equivalence structures. We prove that decidably presentable equivalence structures have a $\Sigma^0_4$ complete index set. A similar result is obtained for decidably categorical equivalence structures.
Keywords: decidable categoricity, autostability relative to strong constructivizations, index set, real closed field, equivalence structure, strong constructivization, decidable structure.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1613
The work is supported by Mathematical Center in Akademgorodok under agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.
Received April 28, 2020, published July 28, 2020
Bibliographic databases:
Document Type: Article
UDC: 510.5
MSC: 03D45
Language: English
Citation: N. Bazhenov, M. Marchuk, “A note on decidable categoricity and index sets”, Sib. Èlektron. Mat. Izv., 17 (2020), 1013–1026
Citation in format AMSBIB
\Bibitem{BazMar20}
\by N.~Bazhenov, M.~Marchuk
\paper A note on decidable categoricity and index sets
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 1013--1026
\mathnet{http://mi.mathnet.ru/semr1270}
\crossref{https://doi.org/10.33048/semi.2020.17.076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000557456400001}
Linking options:
  • https://www.mathnet.ru/eng/semr1270
  • https://www.mathnet.ru/eng/semr/v17/p1013
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :83
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024