Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 988–998
DOI: https://doi.org/10.33048/semi.2020.17.073
(Mi semr1267)
 

Mathematical logic, algebra and number theory

Proof search algorithm in pure logical framework

D. Yu. Vlasov

Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
References:
Abstract: A pure logical framework is a logical framework which does not rely on any particular formal calculus. For example, Metamath (http://metamath.org) is an instance of a pure logical framework. Another example is the Russell system (https://github.com/dmitry-vlasov/russell-flow), which may be considered a high-level language based on Metamath. In this paper, we describe the proof search algorithm used in Russell. The algorithm is proved to be sound and complete, i.e. it gives only valid proofs and any valid proof can be found (up to a substitution) by the proposed algorithm.
Keywords: automated deduction, logical framework.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00531_а
The work is supported by RFFI (grant 17-01-00531).
Received March 13, 2019, published July 20, 2019
Bibliographic databases:
Document Type: Article
UDC: 510.662
MSC: 03B35
Language: English
Citation: D. Yu. Vlasov, “Proof search algorithm in pure logical framework”, Sib. Èlektron. Mat. Izv., 17 (2020), 988–998
Citation in format AMSBIB
\Bibitem{Vla20}
\by D.~Yu.~Vlasov
\paper Proof search algorithm in pure logical framework
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 988--998
\mathnet{http://mi.mathnet.ru/semr1267}
\crossref{https://doi.org/10.33048/semi.2020.17.073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000551514200001}
Linking options:
  • https://www.mathnet.ru/eng/semr1267
  • https://www.mathnet.ru/eng/semr/v17/p988
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:152
    Full-text PDF :24
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024