Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 933–953
DOI: https://doi.org/10.33048/semi.2020.17.069
(Mi semr1263)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

On universal equivalence of partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices

E. N. Poroshenko

Novosibirsk State Technical University, 20, K. Marx ave., Novosibirsk, 630073, Russia
Full-text PDF (436 kB) Citations (1)
References:
Abstract: In this paper, a criterion of universal equivalence for partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices is found.
Keywords: partially commutative Lie algebra, universal theory.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00100_а
Received August 16, 2019, published July 10, 2020
Bibliographic databases:
Document Type: Article
UDC: 512.554.33
MSC: 17B01
Language: Russian
Citation: E. N. Poroshenko, “On universal equivalence of partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices”, Sib. Èlektron. Mat. Izv., 17 (2020), 933–953
Citation in format AMSBIB
\Bibitem{Por20}
\by E.~N.~Poroshenko
\paper On universal equivalence of partially commutative Lie algebras defined by graphs without triangles and squares and with no isolated vertices
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 933--953
\mathnet{http://mi.mathnet.ru/semr1263}
\crossref{https://doi.org/10.33048/semi.2020.17.069}
Linking options:
  • https://www.mathnet.ru/eng/semr1263
  • https://www.mathnet.ru/eng/semr/v17/p933
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :27
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024