Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 913–922
DOI: https://doi.org/10.33048/semi.2020.17.067
(Mi semr1261)
 

Mathematical logic, algebra and number theory

The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one

M. G. Peretyat'kin

Institute of Mathematics and Mathematical Modeling, 125, Pushkin str., Almaty, 050010, Kazakhstan
References:
Abstract: We study the class of all prime strongly constructivizable models of algorithmic dimension $1$ in a fixed finite rich signature. It is proved that the Tarski-Lindenbaum algebra of this class considered together with a Gödel numbering of the sentences is a Boolean $\Pi^0_3$-algebra whose computable ultrafilters form a dense subset in the set of all ultrafilters; moreover, this algebra is universal with respect to the class of Boolean $\Sigma^0_2$-algebras whose computable ultrafilters represent a dense subset in the set of arbitrary ultrafilters in the algebra. This gives a characterization to the Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension $1$ in a fixed finite rich signature.
Keywords: first-order logic, Tarski-Lindenbaum algebra, computable isomorphism, semantic class of models, algorithmic complexity estimate.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP05130852
The work was supported by the Ministry of Science and Education of the Republic of Kazakhstan (grant № AP05130852).
Received April 2, 2020, published July 9, 2020
Bibliographic databases:
Document Type: Article
UDC: 510.67
MSC: 03B10, 03D35
Language: English
Citation: M. G. Peretyat'kin, “The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one”, Sib. Èlektron. Mat. Izv., 17 (2020), 913–922
Citation in format AMSBIB
\Bibitem{Per20}
\by M.~G.~Peretyat'kin
\paper The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 913--922
\mathnet{http://mi.mathnet.ru/semr1261}
\crossref{https://doi.org/10.33048/semi.2020.17.067}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000548270600001}
Linking options:
  • https://www.mathnet.ru/eng/semr1261
  • https://www.mathnet.ru/eng/semr/v17/p913
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:161
    Full-text PDF :38
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024