Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 873–889
DOI: https://doi.org/10.33048/semi.2020.17.064
(Mi semr1258)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical logic, algebra and number theory

Combinatorial problems connected with P. Hall's collection process

V. M. Leontiev

Institute of Mathematics and Computer Science, Siberian Federal University, 79, Svobodny ave., Krasnoyarsk, 660041, Russia
Full-text PDF (203 kB) Citations (2)
References:
Abstract: Let $M_1, \ldots, M_r$ be nonempty subsets of any totally ordered set. Imposing some restricitons on these subsets, we find an expression for the number of elements $(\lambda_1, \ldots, \lambda_r) \in M_1 \times \cdots \times M_r$ that satisfy the condition $C$, where $C$ is a propositional formula consisting of such conditions as $\lambda_i=\lambda_j$, $\lambda_i<\lambda_j$, $i,j \in \overline{1,r}$.
Keywords: collection process, Cartesian product, binary weight.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2020-1534/1
Received August 7, 2019, published June 30, 2020
Bibliographic databases:
Document Type: Article
UDC: 519.117, 519.156, 519.11
MSC: 05A99
Language: Russian
Citation: V. M. Leontiev, “Combinatorial problems connected with P. Hall's collection process”, Sib. Èlektron. Mat. Izv., 17 (2020), 873–889
Citation in format AMSBIB
\Bibitem{Leo20}
\by V.~M.~Leontiev
\paper Combinatorial problems connected with P.~Hall's collection process
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 873--889
\mathnet{http://mi.mathnet.ru/semr1258}
\crossref{https://doi.org/10.33048/semi.2020.17.064}
Linking options:
  • https://www.mathnet.ru/eng/semr1258
  • https://www.mathnet.ru/eng/semr/v17/p873
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :42
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024