|
Geometry and topology
Area of a triangle and angle bisectors
A. A. Buturlakinab, S. S. Presnyakovc, D. O. Revinba, S. A. Savindc a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
c Specialized Educational Scientific Center of Novosibirsk State University, 1/1, Pirogova str., Novosibirsk, 630090, Russia
d The Orthodox Gymnasium in the name saint Sergius of Radonezh, 3, Akademicheskaya str., Novosibirsk, 630090, Russia
Abstract:
Consider a triangle $ABC$ with given lengths $l_a,l_b,l_c$ of its internal angle bisectors. We prove that in general, it is impossible to construct a square of the same area as $ABC$ using a ruler and compass. Moreover, it is impossible to express the area of $ABC$ in radicals of $l_a,l_b,l_c$.
Keywords:
area of a triangle, angle bisectors, ruler and compass construction, Galois group of a polynomial, algebraic equation, solution in radicals.
Received May 6, 2020, published May 31, 2020
Citation:
A. A. Buturlakin, S. S. Presnyakov, D. O. Revin, S. A. Savin, “Area of a triangle and angle bisectors”, Sib. Èlektron. Mat. Izv., 17 (2020), 732–737
Linking options:
https://www.mathnet.ru/eng/semr1246 https://www.mathnet.ru/eng/semr/v17/p732
|
Statistics & downloads: |
Abstract page: | 277 | Full-text PDF : | 111 | References: | 46 |
|