Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 732–737
DOI: https://doi.org/10.33048/semi.2020.17.052
(Mi semr1246)
 

Geometry and topology

Area of a triangle and angle bisectors

A. A. Buturlakinab, S. S. Presnyakovc, D. O. Revinba, S. A. Savindc

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
c Specialized Educational Scientific Center of Novosibirsk State University, 1/1, Pirogova str., Novosibirsk, 630090, Russia
d The Orthodox Gymnasium in the name saint Sergius of Radonezh, 3, Akademicheskaya str., Novosibirsk, 630090, Russia
References:
Abstract: Consider a triangle $ABC$ with given lengths $l_a,l_b,l_c$ of its internal angle bisectors. We prove that in general, it is impossible to construct a square of the same area as $ABC$ using a ruler and compass. Moreover, it is impossible to express the area of $ABC$ in radicals of $l_a,l_b,l_c$.
Keywords: area of a triangle, angle bisectors, ruler and compass construction, Galois group of a polynomial, algebraic equation, solution in radicals.
Funding agency Grant number
Russian Foundation for Basic Research 20-51-00007
Ministry of Science and Higher Education of the Russian Federation 075-2019-1675
Siberian Branch of Russian Academy of Sciences I.1.1., project № 0314-2016-0001
Funding: The reported study was funded by RFBR and BRFBR, project number 20-51-00007, by Mathematical Center in Akademgorodok under agreement No 075-2019-1675 with the Ministry of Science and Higher Education of the Russian Federation, and by the Program of Fundamental Scientific Research of the SB RAS No. I.1.1., project number 0314-2016-0001.
Received May 6, 2020, published May 31, 2020
Bibliographic databases:
Document Type: Article
UDC: 514.112.3, 512.622
MSC: 51M04, 12F10
Language: English
Citation: A. A. Buturlakin, S. S. Presnyakov, D. O. Revin, S. A. Savin, “Area of a triangle and angle bisectors”, Sib. Èlektron. Mat. Izv., 17 (2020), 732–737
Citation in format AMSBIB
\Bibitem{ButPreRev20}
\by A.~A.~Buturlakin, S.~S.~Presnyakov, D.~O.~Revin, S.~A.~Savin
\paper Area of a triangle and angle bisectors
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 732--737
\mathnet{http://mi.mathnet.ru/semr1246}
\crossref{https://doi.org/10.33048/semi.2020.17.052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000537774100001}
Linking options:
  • https://www.mathnet.ru/eng/semr1246
  • https://www.mathnet.ru/eng/semr/v17/p732
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :109
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024