Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 637–646
DOI: https://doi.org/10.33048/semi.2020.17.042
(Mi semr1237)
 

Discrete mathematics and mathematical cybernetics

Vertex colourings of multigraphs with forbiddances on edges

A. N. Glebova, I. A. Pavlovb, K. A. Khadaevc

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia
c Higher School of Economics, 20, Myasnitskaya str., Moscow, 101000, Russia
References:
Abstract: We define and study a new class of vertex colourings of multigraphs, where some pairs of colours are forbidden on the edges of a multigraph. We say that a multigraph $G$ is (properly) $(m,r)$-colourable if for any given sets of $r$ forbidden pairs of colours on the edges of $G$ where exists a (proper) vertex $m$-colouring of $G$ that respects all forbidden pairs. We determine all (properly) $(m,r)$-colourable stars, all $(2,r)$-colourable multigraphs for each $r\ge 1$ and all $(m,r)$-colourable multighraphs, where $r$ is large enough (close to $m^2$). We also introduce a list version of $(m,r)$-colourability and establish (for the case of improper colourings) that the list $(m,r)$-colourability of a multigraph is equivalent to its $(m,r)$-colourability.
Keywords: graph, multigraph, edge, colouring, list colouring, forbiddance.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00353_a
18-01-00747_а
Received November 3, 2018, published April 24, 2020
Bibliographic databases:
Document Type: Article
UDC: 519.172.2, 519.174
MSC: 05C10, 05C15, 05C70
Language: Russian
Citation: A. N. Glebov, I. A. Pavlov, K. A. Khadaev, “Vertex colourings of multigraphs with forbiddances on edges”, Sib. Èlektron. Mat. Izv., 17 (2020), 637–646
Citation in format AMSBIB
\Bibitem{GlePavKha20}
\by A.~N.~Glebov, I.~A.~Pavlov, K.~A.~Khadaev
\paper Vertex colourings of multigraphs with forbiddances on edges
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 637--646
\mathnet{http://mi.mathnet.ru/semr1237}
\crossref{https://doi.org/10.33048/semi.2020.17.042}
Linking options:
  • https://www.mathnet.ru/eng/semr1237
  • https://www.mathnet.ru/eng/semr/v17/p637
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :107
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024