Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 540–565
DOI: https://doi.org/10.33048/semi.2020.17.035
(Mi semr1230)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differentical equations, dynamical systems and optimal control

A viscoplastic contact problem with friction and adhesion

Abderrezak Kasri

Département de Mathématiques, Faculté des sciences, Université 20 Août 1955 - Skikda, B.P.26 Route El-Hadaiek Skikda-Algérie
Full-text PDF (224 kB) Citations (1)
References:
Abstract: The aim of this paper is to present a new result in the study of a contact problem between a viscoplastic body and an obstacle, the so-called foundation. The process is supposed to be quasistatic and the contact is modelled with a version of Coulomb's law of dry friction, normal compliance and an ordinary differential equation which describes the adhesion effect. We derive a variational formulation for the model and under smallness assumption, we establish the existence of a weak solution to the problem. The proof is based on the Rothe time-discretization method, the Banach fixed point theorem and arguments of monotonicity, compactness and lower semicontinuity.
Keywords: viscoplastic materials, adhesion, quasistatic process, Coulomb's law of dry friction, normal compliance, Rothe method, lower semicontinuity, the Banach fixed point theorem, variational inequalities.
Received October 31, 2019, published April 16, 2020
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: Abderrezak Kasri, “A viscoplastic contact problem with friction and adhesion”, Sib. Èlektron. Mat. Izv., 17 (2020), 540–565
Citation in format AMSBIB
\Bibitem{Kas20}
\by Abderrezak~Kasri
\paper A viscoplastic contact problem with friction and adhesion
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 540--565
\mathnet{http://mi.mathnet.ru/semr1230}
\crossref{https://doi.org/10.33048/semi.2020.17.035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000529940100001}
Linking options:
  • https://www.mathnet.ru/eng/semr1230
  • https://www.mathnet.ru/eng/semr/v17/p540
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :139
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024