Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2008, Volume 5, Pages 499–508 (Mi semr123)  

Reviews

Continuous measures

L. Ja. Savel'ev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We consider the binary algebra $(B,+,\cdot)$ and abel semigroup $(H,+)$ with neutral $0$-elements and with topologies ensuring a continuity of additive and multiplicative transfers. Let $A$ – subalgebra of algebra $B$. We shall name an additive and continuous mapping $m\colon A\to H$ as an abstract measure. One of fundamental tasks of the general measure theory is an investigation of existance conditions of a continuous extention $\bar m\colon\bar A\to H$ of measure $m\colon A\to H$ to its definition domain closure $\bar A $. A number of author works mentioned in literature is dedicated to solving this problem. There is their brief review fnd some new results described in the article. These results are connected with extentions of a vector measure to an integral sum and the last one to an integral.
Keywords: measure, integral, continuity, topology.
Received September 1, 2008, published November 26, 2008
Bibliographic databases:
Document Type: Article
UDC: 519.53
MSC: 28B05
Language: Russian
Citation: L. Ja. Savel'ev, “Continuous measures”, Sib. Èlektron. Mat. Izv., 5 (2008), 499–508
Citation in format AMSBIB
\Bibitem{Sav08}
\by L.~Ja.~Savel'ev
\paper Continuous measures
\jour Sib. \`Elektron. Mat. Izv.
\yr 2008
\vol 5
\pages 499--508
\mathnet{http://mi.mathnet.ru/semr123}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586653}
Linking options:
  • https://www.mathnet.ru/eng/semr123
  • https://www.mathnet.ru/eng/semr/v5/p499
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:247
    Full-text PDF :121
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025