Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 521–533
DOI: https://doi.org/10.33048/semi.2020.17.033
(Mi semr1228)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical logic, algebra and number theory

Semirings of skew Laurent polynomials

D. A. Maslyaeva, V. V. Chermnykhb

a Komi Republican Academy of State Service and Management, 11, Kommunisticheskaya str., Syktyvkar, 167982, Russia
b Piritim Sorokin Syktyvkar State University, 55, Octyabrskyi ave., Syktyvkar, 167001, Russia
Full-text PDF (176 kB) Citations (2)
References:
Abstract: The paper considers semirings of skew polynomials and semirings of skew Laurent polynomials with rigid endomorphism. It is shown that the semiring $S$ is $\varphi$-rigid if and only if the semiring of skew Laurent polynomials $S[x^{-1},x,\varphi]$ is a semiring without nilpotent elements. The concept of the $\varphi$-arm-semiring is introduced. It is proved that if $S$ is a $\varphi$-arm-semiring, then $S$ is Baer (left Rickart) exactly when $S[x^{-1},x,\varphi]$ is a Baer (resp. left Rickart) semiring.
Keywords: skew polynomial semiring, skew Laurent polynomial semiring, rigid endomorphism, Armendariz semiring, Baer semiring, Rickart semiring.
Received July 8, 2019, published April 8, 2020
Bibliographic databases:
Document Type: Article
UDC: 512.55
MSC: 16Y60
Language: Russian
Citation: D. A. Maslyaev, V. V. Chermnykh, “Semirings of skew Laurent polynomials”, Sib. Èlektron. Mat. Izv., 17 (2020), 521–533
Citation in format AMSBIB
\Bibitem{MasChe20}
\by D.~A.~Maslyaev, V.~V.~Chermnykh
\paper Semirings of skew Laurent polynomials
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 521--533
\mathnet{http://mi.mathnet.ru/semr1228}
\crossref{https://doi.org/10.33048/semi.2020.17.033}
Linking options:
  • https://www.mathnet.ru/eng/semr1228
  • https://www.mathnet.ru/eng/semr/v17/p521
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :130
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024