Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 338–363
DOI: https://doi.org/10.33048/semi.2020.17.022
(Mi semr1216)
 

This article is cited in 3 scientific papers (total in 3 papers)

Discrete mathematics and mathematical cybernetics

On maximal graphical partitions that are the nearest to a given graphical partition

V. A. Baransky, T. A. Senchonok

Ural Federal University, 51, Lenina ave., Ekaterinburg, 620083, Russia
Full-text PDF (685 kB) Citations (3)
References:
Abstract: A graphical partition is called maximal if it is maximal under domination among graphical partitions of a given weight. Let $\lambda$ and $\mu$ be partitions such that $\mu\leq\lambda$. The height of $\lambda$ over $\mu$ is the number of transformations in some shortest sequence of elementary transformations which transforms $\lambda$ to $\mu$, denoted by $\mathrm{height}(\lambda,\mu)$. For a given graphical partition $\mu$, a maximal graphical partition $\lambda$ such that $\mu\leq\lambda$ and $\mathrm{sum}(\mu)= \mathrm{sum}(\lambda)$ is called the $h$-nearest to $\mu$ if it has the minimal height over $\mu$ among all maximal graphical partitions $\lambda'$ such that $\mu\leq\lambda'$ and $\mathrm{sum}(\mu)= \mathrm{sum}(\lambda')$. The aim is to prove the following result:
Let $\mu$ be a graphical partition and $\lambda$ be an $h$-nearest maximal graphical partition to $\mu$. Then
  • either $r(\lambda)=r(\mu)-1$, $l(\mathrm{tl}(\mu))<r(\mu)$ or $r(\lambda)=r(\mu)$,
  • $\mathrm{height}(\lambda,\mu)= \mathrm{height}(\mathrm{tl}(\mu), \mathrm{hd}(\mu))- \frac{1}{2}[\mathrm{sum}(\mathrm{tl}(\mu))-\mathrm{sum}(\mathrm{hd}(\mu))]= \frac{1}{2}\sum^r_{i=1}|\mathrm{tl}(\mu)_i-\mathrm{hd}(\mu)_i|,$
where $r=r(\mu)$ is the rank, $\mathrm{hd}(\mu))$ is the head and $\mathrm{tl}(\mu))$ is the tail of the partition $\mu$, $l(\mathrm{tl}(\mu))$ is the length of $\mathrm{tl}(\mu)$.
We provide an algorithm that generates some $h$-nearest to $\mu$ maximal graphical partition $\lambda$ such that $r(\lambda)=r(\mu)$. For the case $l(\mathrm{tl}(\mu))<r(\mu)$, we also provide an algorithm that generates some $h$-nearest to $\mu$ maximal graphical partition $\lambda$ such that $r(\lambda)=r(\mu)-1$.
In addition we present a new proof of the Kohnert's criterion for a partition to be graphical not using other criteria.
Keywords: threshold graphs, lattice of integer partitions, graphical partition, maximal graphical partition, Ferrer's diagram.
Received November 9, 2019, published March 10, 2020
Bibliographic databases:
Document Type: Article
UDC: 519.165
MSC: 05A17
Language: Russian
Citation: V. A. Baransky, T. A. Senchonok, “On maximal graphical partitions that are the nearest to a given graphical partition”, Sib. Èlektron. Mat. Izv., 17 (2020), 338–363
Citation in format AMSBIB
\Bibitem{BarSen20}
\by V.~A.~Baransky, T.~A.~Senchonok
\paper On maximal graphical partitions that are the nearest to a given graphical partition
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 338--363
\mathnet{http://mi.mathnet.ru/semr1216}
\crossref{https://doi.org/10.33048/semi.2020.17.022}
Linking options:
  • https://www.mathnet.ru/eng/semr1216
  • https://www.mathnet.ru/eng/semr/v17/p338
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:307
    Full-text PDF :162
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024