Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2008, Volume 5, Pages 465–482 (Mi semr121)  

Reviews

Condenser capacities and majorization principles in the geometric function theory of a complex variable

V. N. Dubinin

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences
References:
Abstract: This survey paper is devoted to applications of potential theory to some extremal problems of the geometric function theory of a complex variable. In particular, we present variational principles of conformal mappings that are derived from the properties of generalized condensers and symmetrization in a unified way. The variations of the Robin functions under deformation of a domain or a portion of its boundary are considered. Applications of condensers and majorization principles include distortion theorems for holomorphic functions, covering theorem for $p$-valent functions in a circular annulus, Bernstein-type inequalities for rational functions with prescribed poles, polynomial inequalities and more.
Keywords: Condenser capacity, hyperbolic capacity, logarithmic capacity, Robin function, symmetrization, dissimmetrization, variational principles, majorization principles, conformal mappings, distortion theorems, covering theorems, $p$-valent functions, rational functions, polynomials.
Received September 1, 2008, published November 26, 2008
Bibliographic databases:
Document Type: Article
UDC: 512.62, 517.54, 517.956
Language: Russian
Citation: V. N. Dubinin, “Condenser capacities and majorization principles in the geometric function theory of a complex variable”, Sib. Èlektron. Mat. Izv., 5 (2008), 465–482
Citation in format AMSBIB
\Bibitem{Dub08}
\by V.~N.~Dubinin
\paper Condenser capacities and majorization principles in the geometric function theory of a~complex variable
\jour Sib. \`Elektron. Mat. Izv.
\yr 2008
\vol 5
\pages 465--482
\mathnet{http://mi.mathnet.ru/semr121}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586651}
Linking options:
  • https://www.mathnet.ru/eng/semr121
  • https://www.mathnet.ru/eng/semr/v5/p465
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:447
    Full-text PDF :111
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025