Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 51–60
DOI: https://doi.org/10.33048/semi.2020.17.005
(Mi semr1199)
 

This article is cited in 4 scientific papers (total in 4 papers)

Differentical equations, dynamical systems and optimal control

A solution of the singularly perturbed Cauchy problem in the presence of a «weak» turning point at the limit operator

A. G. Eliseev, P. V. Kirichenko

National Research University «MPEI», 17, Krasnokazarmennaya str., Moscow, 111116, Russia
Full-text PDF (164 kB) Citations (4)
References:
Abstract: The paper proposes a method for constructing an asymptotic solution of the singularly perturbed Cauchy problem in the case of violation of the stability conditions of the spectrum of the limit operator. In particular, we consider the problem with a turning point where eigenvalues "stick together" at $t=0$.
Keywords: singularly perturbed Cauchy problem, turning point, regularization method.
Received February 26, 2019, published February 4, 2020
Bibliographic databases:
Document Type: Article
UDC: 517.928.2
MSC: 34E20
Language: Russian
Citation: A. G. Eliseev, P. V. Kirichenko, “A solution of the singularly perturbed Cauchy problem in the presence of a «weak» turning point at the limit operator”, Sib. Èlektron. Mat. Izv., 17 (2020), 51–60
Citation in format AMSBIB
\Bibitem{EliKir20}
\by A.~G.~Eliseev, P.~V.~Kirichenko
\paper A solution of the singularly perturbed Cauchy problem in the presence of a <<weak>> turning point at the limit operator
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 51--60
\mathnet{http://mi.mathnet.ru/semr1199}
\crossref{https://doi.org/10.33048/semi.2020.17.005}
Linking options:
  • https://www.mathnet.ru/eng/semr1199
  • https://www.mathnet.ru/eng/semr/v17/p51
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :155
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024