Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 2098–2109
DOI: https://doi.org/10.33048/semi.2019.16.149
(Mi semr1190)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical logic, algebra and number theory

Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang–Baxter equation on quadratic Lie algebras

M. E. Goncharovab

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Department of Mechanics and Mathematics, Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
Full-text PDF (539 kB) Citations (2)
References:
Abstract: We study possible connections between Rota-Baxter operators of non-zero weight and non-skew-symmetric solutions of the classical Yang–Baxter equation on finite-dimensional quadratic Lie algebras. The particular attention is made to the case when for a solution $r$ the element $r+\tau(r)$ is $L$-invariant.
Keywords: Rota–Baxter operator, quadratic Lie algebra, non-associative bialgebra, classical Yang–Baxter equation.
Funding agency Grant number
Siberian Branch of Russian Academy of Sciences I.1.1, project 0314-2019-0001
The work is supported by the Program of fundamental scientific researches of the Siberian Branch of Russian Academy of Sciences, I.1.1, project 0314-2019-0001.
Received September 30, 2019, published December 27, 2019
Bibliographic databases:
Document Type: Article
UDC: 512.554
Language: English
Citation: M. E. Goncharov, “Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang–Baxter equation on quadratic Lie algebras”, Sib. Èlektron. Mat. Izv., 16 (2019), 2098–2109
Citation in format AMSBIB
\Bibitem{Gon19}
\by M.~E.~Goncharov
\paper Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang--Baxter equation on quadratic Lie algebras
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 2098--2109
\mathnet{http://mi.mathnet.ru/semr1190}
\crossref{https://doi.org/10.33048/semi.2019.16.149}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000509878700001}
Linking options:
  • https://www.mathnet.ru/eng/semr1190
  • https://www.mathnet.ru/eng/semr/v16/p2098
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:236
    Full-text PDF :116
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024