|
This article is cited in 2 scientific papers (total in 2 papers)
Real, complex and functional analysis
Completeness theorem in $(q_1,q_2)$-quasimetric spaces
A. V. Greshnovab, R. I. Zhukova a Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
b Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Abstract:
In $(q_1,q_2)$-quasimetric space $(X,d)$ we
proved the completeness theorem for $(q_1,q_2)$-quasimetric space
$(\mathcal{M}_{\overline{d}},H)$, where $\mathcal{M}_{\overline{d}}$
is the set of all $\overline{d}$-closed sets, $\overline{d}$ is
conjugate to $d$ $(q_2,q_1)$-quasimetric, $H$ is the Hausdorff
distance.
Keywords:
$(q_1,q_2)$-quasimetric space, completeness, conjugate $(q_2,q_1)$-quasimetric, Hausdorff distance.
Received December 1, 2019, published December 27, 2019
Citation:
A. V. Greshnov, R. I. Zhukov, “Completeness theorem in $(q_1,q_2)$-quasimetric spaces”, Sib. Èlektron. Mat. Izv., 16 (2019), 2090–2097
Linking options:
https://www.mathnet.ru/eng/semr1189 https://www.mathnet.ru/eng/semr/v16/p2090
|
Statistics & downloads: |
Abstract page: | 257 | Full-text PDF : | 139 | References: | 20 |
|