Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 2090–2097
DOI: https://doi.org/10.33048/semi.2019.16.148
(Mi semr1189)
 

This article is cited in 2 scientific papers (total in 2 papers)

Real, complex and functional analysis

Completeness theorem in $(q_1,q_2)$-quasimetric spaces

A. V. Greshnovab, R. I. Zhukova

a Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
b Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Full-text PDF (170 kB) Citations (2)
References:
Abstract: In $(q_1,q_2)$-quasimetric space $(X,d)$ we proved the completeness theorem for $(q_1,q_2)$-quasimetric space $(\mathcal{M}_{\overline{d}},H)$, where $\mathcal{M}_{\overline{d}}$ is the set of all $\overline{d}$-closed sets, $\overline{d}$ is conjugate to $d$ $(q_2,q_1)$-quasimetric, $H$ is the Hausdorff distance.
Keywords: $(q_1,q_2)$-quasimetric space, completeness, conjugate $(q_2,q_1)$-quasimetric, Hausdorff distance.
Funding agency Grant number
Siberian Branch of Russian Academy of Sciences I.1.2., проект № 0314-2016-0006
Received December 1, 2019, published December 27, 2019
Bibliographic databases:
Document Type: Article
UDC: 515.124.2
MSC: 30L99, 53C23, 54D10
Language: Russian
Citation: A. V. Greshnov, R. I. Zhukov, “Completeness theorem in $(q_1,q_2)$-quasimetric spaces”, Sib. Èlektron. Mat. Izv., 16 (2019), 2090–2097
Citation in format AMSBIB
\Bibitem{GreZhu19}
\by A.~V.~Greshnov, R.~I.~Zhukov
\paper Completeness theorem in $(q_1,q_2)$-quasimetric spaces
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 2090--2097
\mathnet{http://mi.mathnet.ru/semr1189}
\crossref{https://doi.org/10.33048/semi.2019.16.148}
Linking options:
  • https://www.mathnet.ru/eng/semr1189
  • https://www.mathnet.ru/eng/semr/v16/p2090
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :139
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024