Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 1937–1946
DOI: https://doi.org/10.33048/semi.2019.16.139
(Mi semr1180)
 

This article is cited in 5 scientific papers (total in 5 papers)

Mathematical logic, algebra and number theory

Relatively free associative Lie nilpotent algebras of rank $3$

S. V. Pchelintsev

Department of Data Analysis, Decision Making and Financial Technologies, Finance University under the Government of the Russian Federation, 49, Leningradsky ave., Moscow, 125993, Russia
Full-text PDF (168 kB) Citations (5)
References:
Abstract: Let $\Phi$ be an arbitrary unital associative and commutative ring. The relatively free Lie nilpotent algebras with three generators over $\Phi$ are studied. The product theorem is proved: $T^{(n)}T^{(m)} \subseteq T^{(n + m-1)}$, where $T^{(n)}$ is a verbal ideal generated by the commutators of degree $n$. The identities of three variables that are satisfied in a free associative Lie nilpotent algebra of degree $n\geq 3$ are described. It is proved that the additive structure of the considered algebra is a free module over the ring $\Phi$.
Keywords: associative Lie nilpotent algebra, identity in three variables, torsion of a free ring.
Funding agency Grant number
Russian Science Foundation 14-21-00065
Received May 26, 2019, published December 18, 2019
Bibliographic databases:
Document Type: Article
UDC: 512.552.4, 512.572
MSC: 16R10, 17A50
Language: Russian
Citation: S. V. Pchelintsev, “Relatively free associative Lie nilpotent algebras of rank $3$”, Sib. Èlektron. Mat. Izv., 16 (2019), 1937–1946
Citation in format AMSBIB
\Bibitem{Pch19}
\by S.~V.~Pchelintsev
\paper Relatively free associative Lie nilpotent algebras of rank~$3$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 1937--1946
\mathnet{http://mi.mathnet.ru/semr1180}
\crossref{https://doi.org/10.33048/semi.2019.16.139}
Linking options:
  • https://www.mathnet.ru/eng/semr1180
  • https://www.mathnet.ru/eng/semr/v16/p1937
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024