Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 1916–1926
DOI: https://doi.org/10.33048/semi.2019.16.137
(Mi semr1178)
 

This article is cited in 2 scientific papers (total in 2 papers)

Computational mathematics

On convergence of M. Osborne' inverse iteration algorithms for modified Prony method

A. A. Lomov

Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Full-text PDF (172 kB) Citations (2)
References:
Abstract: A convergence of two inverse iteration algorithms of M. Osborne in the nonlinear eigenvalue problem of modified Prony method under small perturbations is investigated.
Keywords: difference equations, parameter identification, modified Prony method, nonlinear eigenvalue problem, inverse iteration, semilocal convergence.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00754
Received July 8, 2019, published December 17, 2019
Bibliographic databases:
Document Type: Article
UDC: 519.6
MSC: 65F15, 41A30
Language: Russian
Citation: A. A. Lomov, “On convergence of M. Osborne' inverse iteration algorithms for modified Prony method”, Sib. Èlektron. Mat. Izv., 16 (2019), 1916–1926
Citation in format AMSBIB
\Bibitem{Lom19}
\by A.~A.~Lomov
\paper On convergence of M.~Osborne' inverse iteration algorithms for modified Prony method
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 1916--1926
\mathnet{http://mi.mathnet.ru/semr1178}
\crossref{https://doi.org/10.33048/semi.2019.16.137}
Linking options:
  • https://www.mathnet.ru/eng/semr1178
  • https://www.mathnet.ru/eng/semr/v16/p1916
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024