Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 1885–1900
DOI: https://doi.org/10.33048/semi.2019.16.134
(Mi semr1175)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

The strict upper bound of ranks of commutator subgroups of finite $p$-groups

B. M. Veretennikov

Ural Federal University, 19, Mira str., Ekaterinburg, 620002, Russia
Full-text PDF (188 kB) Citations (1)
References:
Abstract: All groups in the abstract are finite. We define rank $d(G)$ of a $p$-group $G$ as the minimal number of generators of $G$. Let $p$ be any prime number, $k_1, \dots, k_n$ – positive integers, $n \geq 2$. By $D(k_1, \dots, k_n)$ we denote the number of sequences $i_1,\dots,i_k$ in which $k \geq 2$, $i_1,\dots,i_k$ are positive integers from $[1,n]$, $i_1 > i_2$, $i_2 \leq \dots \leq i_k$ and for any $j \in [1,n]$ number $j$ may not occur in such sequences more than $(p^{k_j}-1)$ times. We prove that for any $p$-group $G$ generated by elements $a_1,\dots,a_n$ of orders $p_1^{k_1},\dots,p_n^{k_n}$ $(n \geq 2)$ the inequality $d(G') \leq D(k_1, \dots, k_n, p)$ is true and the equality in this inequality is attainable. Also, we prove that for any $p$-group $G$ generated by elements $a_1,\dots,a_n$ of orders $p_1^{k_1},\dots,p_n^{k_n}$ $(n \geq 2)$, with elementary abelian commutator subgroup $G'$ the class of nilpotency of $G'$ does not exceed $p_1^{k_1}+\dots+p_n^{k_n}-n$ and this upper bound is also attainable.
Keywords: finite $p$-group generated by elements of orders $p_1^{k_1},\dots,p_n^{k_n}$, number of generators of commutator subgroup of a finite $p$-group, the class of nilpotency of of a finite $p$-group with elementary abelian commutator subgroup, definition of a group by means of generators and defining relations.
Received September 20, 2019, published December 9, 2019
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 20B05
Language: Russian
Citation: B. M. Veretennikov, “The strict upper bound of ranks of commutator subgroups of finite $p$-groups”, Sib. Èlektron. Mat. Izv., 16 (2019), 1885–1900
Citation in format AMSBIB
\Bibitem{Ver19}
\by B.~M.~Veretennikov
\paper The strict upper bound of ranks of commutator subgroups of finite $p$-groups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 1885--1900
\mathnet{http://mi.mathnet.ru/semr1175}
\crossref{https://doi.org/10.33048/semi.2019.16.134}
Linking options:
  • https://www.mathnet.ru/eng/semr1175
  • https://www.mathnet.ru/eng/semr/v16/p1885
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024