Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 1581–1586
DOI: https://doi.org/10.33048/semi.2019.16.109
(Mi semr1151)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete mathematics and mathematical cybernetics

Wiener index of subdivisions of a tree

A. A. Dobrynin

Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Full-text PDF (146 kB) Citations (1)
References:
Abstract: The Wiener index $W(T)$ of a tree $T$ is defined as the sum of distances between all vertices of $T$. The edge $k$-subdivision $T_e$ is constructed from a tree $T$ by replacing its edge $e$ with the path on $k+2$ vertices. Edge $k$-subdivisions of each of edges $e_1, e_2, \dots, e_{n-1}$ of a tree with $n$ vertices generate a family containing $n-1$ trees. A relation between quantities $W(T_{e_1}) + W(T_{e_2}) + \cdots + W(T_{e_{n-1}})$ and $W(T)$ is established.
Keywords: tree, graph invariant, Wiener index.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-560008_Иран_а
19-01-00682
This work is supported by the RFBR (grants 17–51–560008 and 19–01–00682).
Received July 26, 2019, published November 5, 2019
Bibliographic databases:
Document Type: Article
UDC: 519.172
MSC: 05C12
Language: English
Citation: A. A. Dobrynin, “Wiener index of subdivisions of a tree”, Sib. Èlektron. Mat. Izv., 16 (2019), 1581–1586
Citation in format AMSBIB
\Bibitem{Dob19}
\by A.~A.~Dobrynin
\paper Wiener index of subdivisions of a tree
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 1581--1586
\mathnet{http://mi.mathnet.ru/semr1151}
\crossref{https://doi.org/10.33048/semi.2019.16.109}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000494443000001}
Linking options:
  • https://www.mathnet.ru/eng/semr1151
  • https://www.mathnet.ru/eng/semr/v16/p1581
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :133
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024