|
This article is cited in 1 scientific paper (total in 1 paper)
Probability theory and mathematical statistics
On a stochastic process with switchings
V. I. Lotovab, V. R. Xodjibayevc a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
c Namangan Engineering-Construction Institute, 12, Islam Karimov str., Namangan, 160103, Uzbekistan
Abstract:
We study a stochastic process $X(t)$ with switchings between two stationary processes with independent increments while achieving regulatory barriers. We obtain the dual Laplace–Stieltjes transform of the distribution of the process $X(t)$ and its limit as $t\to\infty$. Under Cramer's type conditions, the asymptotic representations of these transforms are obtained when the width of the regulating strip is growing. We use known results for regenerative processes and factorization technique for the study in boundary crossing problems for stochastic processes.
Keywords:
oscillating stochastic process, stationary process with independent increments, regenerative process, stationary distribution, factorization method.
Received June 20, 2019, published October 21, 2019
Citation:
V. I. Lotov, V. R. Xodjibayev, “On a stochastic process with switchings”, Sib. Èlektron. Mat. Izv., 16 (2019), 1531–1546
Linking options:
https://www.mathnet.ru/eng/semr1145 https://www.mathnet.ru/eng/semr/v16/p1531
|
Statistics & downloads: |
Abstract page: | 265 | Full-text PDF : | 153 | References: | 19 |
|