Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 1276–1288
DOI: https://doi.org/10.33048/semi.2019.16.088
(Mi semr1129)
 

Probability theory and mathematical statistics

The principle of invariance in the Donsker form to the partial sum processes of finite order moving averages

N. S. Arkashovab

a Novosibirsk State Technical University, 20, K. Marx ave., Novosibirsk, 630073, Russia
b Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia
References:
Abstract: We consider the process of partial sums of moving averages of finite order with a regular varying memory function, constructed from a stationary sequence, variance of the sum of which is a regularly varying function. We study the Gaussian approximation of this process of partial sums with the aid of a certain class of Gaussian processes, and obtain sufficient conditions for the $C$-convergence in the invariance principle in the Donsker form.
Keywords: invariance principle, fractal Brownian motion, moving average, Gaussian process, memory function, regular varying function.
Received April 16, 2019, published September 20, 2019
Bibliographic databases:
Document Type: Article
UDC: 519.214
MSC: 60F17
Language: Russian
Citation: N. S. Arkashov, “The principle of invariance in the Donsker form to the partial sum processes of finite order moving averages”, Sib. Èlektron. Mat. Izv., 16 (2019), 1276–1288
Citation in format AMSBIB
\Bibitem{Ark19}
\by N.~S.~Arkashov
\paper The principle of invariance in the Donsker form to the partial sum processes of finite order moving averages
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 1276--1288
\mathnet{http://mi.mathnet.ru/semr1129}
\crossref{https://doi.org/10.33048/semi.2019.16.088}
Linking options:
  • https://www.mathnet.ru/eng/semr1129
  • https://www.mathnet.ru/eng/semr/v16/p1276
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024