Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 1036–1056
DOI: https://doi.org/10.33048/semi.2019.16.072
(Mi semr1113)
 

This article is cited in 5 scientific papers (total in 5 papers)

Differentical equations, dynamical systems and optimal control

Initial-boundary value problem for a radiative transfer equation with generalized matching conditions

A. Kimab, I. V. Prokhorovab

a Institute of Applied Mathematics FEB RAS, 7, Radio str., Vladivostok, 690041, Russia
b Far Eastern Federal University 8, Sukhanova str., Vladivostok, 690950, Russia
References:
Abstract: We consider the Cauchy problem for a non-stationary radiative transfer equation in a three-dimensional multicomponent medium with generalized matching conditions. These matching condition describe Fresnel and diffuse reflection and refraction at the interfaces. The existence and uniqueness of a solution of the initial-boundary value problem is proved. We construct a Monte-Carlo numerical method designed to find a solution that accounts for the space-time localization of radiation sources. Computational experiments were carried out and their results presented.
Keywords: radiative transfer equation, a Cauchy problem, Fresnel and diffuse matching conditions, Monte Carlo methods.
Received April 22, 2019, published August 7, 2019
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 35Q20 + 35Q60
Language: English
Citation: A. Kim, I. V. Prokhorov, “Initial-boundary value problem for a radiative transfer equation with generalized matching conditions”, Sib. Èlektron. Mat. Izv., 16 (2019), 1036–1056
Citation in format AMSBIB
\Bibitem{KimPro19}
\by A.~Kim, I.~V.~Prokhorov
\paper Initial-boundary value problem for a radiative transfer equation with generalized matching conditions
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 1036--1056
\mathnet{http://mi.mathnet.ru/semr1113}
\crossref{https://doi.org/10.33048/semi.2019.16.072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000479063900005}
Linking options:
  • https://www.mathnet.ru/eng/semr1113
  • https://www.mathnet.ru/eng/semr/v16/p1036
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:793
    Full-text PDF :153
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024