Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 618–637
DOI: https://doi.org/10.33048/semi.2019.16.040
(Mi semr1082)
 

Mathematical logic, algebra and number theory

About effective versions of game theoretical semantics for first-order logic

I. Yu. Shevchenko

Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
References:
Abstract: In the article we compare two approaches to effectivisation of game theoretical semantics for first-order logic. One of the approaches was provided by Sergey P. Odintsov, Stanislav O. Speranski, Igor Yu. Shevchenko in the previous article, and it is based on a game-theoretical reconstruction of strategy conception. In this article we provide the other approach — we consider a strategy as a function determined on a set of histories and then we set an equivalence between these two approaches.
Keywords: game theoretical semantics, Nelson's realizability, computability.
Received July 29, 2018, published May 15, 2019
Bibliographic databases:
Document Type: Article
UDC: 510.64
Language: Russian
Citation: I. Yu. Shevchenko, “About effective versions of game theoretical semantics for first-order logic”, Sib. Èlektron. Mat. Izv., 16 (2019), 618–637
Citation in format AMSBIB
\Bibitem{She19}
\by I.~Yu.~Shevchenko
\paper About effective versions of game theoretical semantics for first-order logic
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 618--637
\mathnet{http://mi.mathnet.ru/semr1082}
\crossref{https://doi.org/10.33048/semi.2019.16.040}
Linking options:
  • https://www.mathnet.ru/eng/semr1082
  • https://www.mathnet.ru/eng/semr/v16/p618
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025