Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 481–492
DOI: https://doi.org/10.33048/semi.2019.16.030
(Mi semr1072)
 

This article is cited in 4 scientific papers (total in 4 papers)

Real, complex and functional analysis

Solution of functional equations related to elliptic functions. II

A. A. Illarionovab

a Khabarovsk Division of the Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences, 54, Dzerzhinsky str., Khabarovsk, 680000, Russia
b Pacific National University, 136, Tihookeanskaya str., Khabarovsk, 680035, Russia
Full-text PDF (195 kB) Citations (4)
References:
Abstract: Let $s,m, d\in \mathbb{N}$, $s\ge 2$. We solve the functional equation
\begin{gather*} f_1(\mathbf{u}_1+\mathbf{v})\ldots f_{s-1}(\mathbf{u}_{s-1}+\mathbf{v})f_s(\mathbf{u}_1+\ldots +\mathbf{u}_{s-1}-\mathbf{v}) \\ =\sum_{j=1}^{m} \phi_j(\mathbf{u}_1,\ldots,\mathbf{u}_{s-1})\psi_j(\mathbf{v}), \end{gather*}
for unknown entire functions $f_1,\ldots,f_s:\mathbb{C}^d\to \mathbb{C}$, $\phi_j: (\mathbb{C}^d)^{s-1}\to \mathbb{C}$, $\psi_j: \mathbb{C}^d\to \mathbb{C}$ in the case of $m\le s+1$. All non-elementary solutions are described by the Weierstrass sigma-function. Previously, such results were known only for $s=2$, $m=1,2$, as well as for $d=1$, $s=2,3$. The considered equation arises in the study of polylinear functional-differential operators and multidimensional vector addition theorems.
Keywords: addition theorem, functional equation, Weierstrass sigma-function, theta function, elliptic function.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00638_а
Received January 30, 2019, published April 5, 2019
Bibliographic databases:
Document Type: Article
UDC: 517.965, 517.583
MSC: 39B32, 33E05
Language: Russian
Citation: A. A. Illarionov, “Solution of functional equations related to elliptic functions. II”, Sib. Èlektron. Mat. Izv., 16 (2019), 481–492
Citation in format AMSBIB
\Bibitem{Ill19}
\by A.~A.~Illarionov
\paper Solution of functional equations related to elliptic functions.~II
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 481--492
\mathnet{http://mi.mathnet.ru/semr1072}
\crossref{https://doi.org/10.33048/semi.2019.16.030}
Linking options:
  • https://www.mathnet.ru/eng/semr1072
  • https://www.mathnet.ru/eng/semr/v16/p481
    Cycle of papers
    This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024