Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 331–339
DOI: https://doi.org/10.33048/semi.2019.16.020
(Mi semr1062)
 

Mathematical logic, algebra and number theory

Friedberg numberings of families of partial computable functionals

S. S. Ospichevab

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia
References:
Abstract: We consider computable numberings of families of partial computable functionals of finite types. We show, that if a family of all partial computable functionals of type 0 has a computable Friedberg numbering, then family of all partial computable functionals of any given type also has computable Friedberg numbering. Furthermore, for a type $\sigma|\tau$ there are infinitely many nonequivalent computable minimal nonpositive, positive nondecidable and Friedberg numberings.
Keywords: partial computable functionals, computable morphisms, computable numberings, Rogers semilattice, minimal numbering, positive numbering, Friedberg numbering.
Funding agency Grant number
Russian Science Foundation 17-11-01176
Received November 24, 2018, published March 11, 2019
Bibliographic databases:
Document Type: Article
UDC: 510.5
MSC: 03D45
Language: Russian
Citation: S. S. Ospichev, “Friedberg numberings of families of partial computable functionals”, Sib. Èlektron. Mat. Izv., 16 (2019), 331–339
Citation in format AMSBIB
\Bibitem{Osp19}
\by S.~S.~Ospichev
\paper Friedberg numberings of families of partial computable functionals
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 331--339
\mathnet{http://mi.mathnet.ru/semr1062}
\crossref{https://doi.org/10.33048/semi.2019.16.020}
Linking options:
  • https://www.mathnet.ru/eng/semr1062
  • https://www.mathnet.ru/eng/semr/v16/p331
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :91
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024