|
Real, complex and functional analysis
The Kostlan–Shub–Smale random polynomials in the case of growing number of variables
V. Gichev Sobolev Institute of Mathematics, Omsk Branch
13, Pevtsova str.,
Omsk, 644099, Russia
Abstract:
Let $\mathcal{P}_n=\sum_{j}\mathcal{H}_{j}$ be the decomposition in $L^2(S^m)$ of the space of homogeneous polynomials of degree $n$ on $\mathbb{R}^{m+1}$ into the sum of irreducible components of the group $\mathrm{SO}(m+1)$. We consider the asymptotic behavior of the sequence $\nu_{n}(t)=\frac{\mathsf{E}(|\pi_{j}u|^{2})}{\mathsf{E}(|u|^{2})}$, where $t=\frac{j}{n}$, $\pi_{j}$ is the projection onto $\mathcal{H}_{j}$, and $\mathsf{E}$ stands for the expectation in the Kostlan-Shub–Smale model for random polynomials. Assuming $\frac{m}{n}\to a>0$ as $n\to\infty$, we prove that $\nu_{n}(t)$ is asymptotic to $\sqrt{\frac{4+a}{\pi n}}\,e^{-n(1+\frac{a}{4})(t-\sigma_{a})^{2}}$, where $\sigma_{a}=\frac12(\sqrt{a^{2}+4a}-a)$.
Keywords:
random polynomials.
Received June 23, 2017, published February 8, 2019
Citation:
V. Gichev, “The Kostlan–Shub–Smale random polynomials in the case of growing number of variables”, Sib. Èlektron. Mat. Izv., 16 (2019), 217–228
Linking options:
https://www.mathnet.ru/eng/semr1052 https://www.mathnet.ru/eng/semr/v16/p217
|
Statistics & downloads: |
Abstract page: | 261 | Full-text PDF : | 125 | References: | 38 |
|