Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 165–174 (Mi semr1047)  

Mathematical logic, algebra and number theory

A criterion for the universality of a matrix from the group $UT_n(R)$ over a commutative and associative ring $R$ with unity

N. G. Khisamiev, S. D. Tynybekova, A. A. Konyrkhanova

Faculty of Information Technologies, 2, Satpayev str., Astana, 010008, Kazakhstan
References:
Abstract: We find necessary and sufficient universality conditions of a matrix from the unitriangular matrix group of arbitrary finite dimension over a commutative associative ring with unity. An algorithm is used to determine the universality of the element of the unitriangular matrix group over the ring of polynomials with a finite number of variables with integer coefficients.
Keywords: unitriangular matrix group, derived subgroup, universal element, ring, Euclidean ring.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan ИРН AP0513249
Received June 12, 2017, published February 6, 2019
Document Type: Article
UDC: 512.54
MSC: 20F18,20H25
Language: Russian
Citation: N. G. Khisamiev, S. D. Tynybekova, A. A. Konyrkhanova, “A criterion for the universality of a matrix from the group $UT_n(R)$ over a commutative and associative ring $R$ with unity”, Sib. Èlektron. Mat. Izv., 16 (2019), 165–174
Citation in format AMSBIB
\Bibitem{KhiTynKon19}
\by N.~G.~Khisamiev, S.~D.~Tynybekova, A.~A.~Konyrkhanova
\paper A criterion for the universality of a matrix from the group $UT_n(R)$ over a commutative and associative ring $R$ with unity
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 165--174
\mathnet{http://mi.mathnet.ru/semr1047}
Linking options:
  • https://www.mathnet.ru/eng/semr1047
  • https://www.mathnet.ru/eng/semr/v16/p165
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :176
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024