Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 1–20
DOI: https://doi.org/10.33048/semi.2019.16.001
(Mi semr1043)
 

This article is cited in 3 scientific papers (total in 3 papers)

Probability theory and mathematical statistics

Large deviations for processes on half-line: Random Walk and Compound Poisson Process

F. C. Klebanera, A. A. Mogulskiib

a School of Mathematical Sciences, Monash University, Australia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, Novosibirsk, 630090, Russia
Full-text PDF (206 kB) Citations (3)
References:
Abstract: We establish, under the Cramer exponential moment condition in a neighbourhood of zero, the Extended Large Deviation Principle for the Random Walk and the Compound Poisson processes in the metric space $\mathbb{V}$ of functions of finite variation on $[0,\infty)$ with the modified Borovkov metric.
Keywords: Large Deviations, Random Walk, Compound Poisson Process, Cramer's condition, rate function, Extended Large Deviation Principle.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00101_а
Siberian Branch of Russian Academy of Sciences I.1.3., project No. 0314-2016-0008
Australian Research Council DP150103588
This research was supported by the Russian Fund for Fundamental Research (projects number 18-01-00101$\backslash$18), by the program of fundamental scientific researches of the SB RAS No. I.1.3., project No. 0314-2016-0008 and the Australian Research Council Grant DP150103588.
Received July 2, 2018, published January 24, 2019
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: English
Citation: F. C. Klebaner, A. A. Mogulskii, “Large deviations for processes on half-line: Random Walk and Compound Poisson Process”, Sib. Èlektron. Mat. Izv., 16 (2019), 1–20
Citation in format AMSBIB
\Bibitem{KleMog19}
\by F.~C.~Klebaner, A.~A.~Mogulskii
\paper Large deviations for processes on half-line: Random Walk and Compound Poisson Process
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 1--20
\mathnet{http://mi.mathnet.ru/semr1043}
\crossref{https://doi.org/10.33048/semi.2019.16.001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000462268100001}
Linking options:
  • https://www.mathnet.ru/eng/semr1043
  • https://www.mathnet.ru/eng/semr/v16/p1
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024