Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 1630–1650
DOI: https://doi.org/10.33048/semi.2018.15.135
(Mi semr1024)
 

This article is cited in 3 scientific papers (total in 3 papers)

Real, complex and functional analysis

Funk–Minkowski transform and spherical convolution of Hilbert type in reconstructing functions on the sphere

S. G. Kazantsev

Sobolev Institute of Mathematics, 4, pr. Koptyuga, Novosibirsk, 630090, Russia
Full-text PDF (234 kB) Citations (3)
References:
Abstract: The Funk–Minkowski transform ${\mathcal F}$ associates a function $f$ on the sphere ${\mathbb S}^2$ with its mean values (integrals) along all great circles of the sphere. The presented analytical inversion formula reconstruct the unknown function $f$ completely if two Funk–Minkowski transforms, ${\mathcal F}f$ and ${\mathcal F} \nabla f$, are known. Another result of this article is related to the problem of Helmholtz–Hodge decomposition for tangent vector field on the sphere ${\mathbb S}^2$. We proposed solution for this problem which is used the Funk–Minkowski transform ${\mathcal F}$ and Hilbert type spherical convolution ${\mathcal S}$.
Keywords: Funk–Minkowski transform, Funk–-Radon transform, spherical convolution of Hilbert type, Fourier multiplier operator, inverse operator, surface gradient, scalar and vector spherical harmonics, tangential spherical vector field, Helmholtz–Hodge decomposition.
Received July 4, 2018, published December 14, 2018
Bibliographic databases:
Document Type: Article
UDC: 514.7, 517.4, 517.98
Language: English
Citation: S. G. Kazantsev, “Funk–Minkowski transform and spherical convolution of Hilbert type in reconstructing functions on the sphere”, Sib. Èlektron. Mat. Izv., 15 (2018), 1630–1650
Citation in format AMSBIB
\Bibitem{Kaz18}
\by S.~G.~Kazantsev
\paper Funk--Minkowski transform and spherical convolution of Hilbert type in reconstructing functions on the sphere
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 1630--1650
\mathnet{http://mi.mathnet.ru/semr1024}
\crossref{https://doi.org/10.33048/semi.2018.15.135}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454860200075}
Linking options:
  • https://www.mathnet.ru/eng/semr1024
  • https://www.mathnet.ru/eng/semr/v15/p1630
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024