Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 1595–1604
DOI: https://doi.org/10.33048/semi.2018.15.132
(Mi semr1017)
 

Mathematical logic, algebra and number theory

A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$

V. V. Korablevaab

a N.N. Krasovskii Institute of Mathematics and Mechanics, 16, S. Kovalevskaya st., Yekaterinburg, 620990, Russia
b Chelyabinsk State University, Bratiev Kashirinykh St., 129, Chelyabinsk, 454001, Russia
References:
Abstract: For a finite group $G$, subgroups $M_1$ and $M_2$ of $G$ and any $i\in\mathbb{N}$, the subgroups $(M_1, M_2)^i$ and $(M_2, M_1)^i$ of $M_1\cap M_2$ are defined, inductively on $i$, as follows:
$$(M_1, M_2)^1 = (M_1\cap M_2)_{M_1},~(M_2, M_1)^1 = (M_1\cap M_2)_{M_2},$$

$$(M_1, M_2)^{i+1} = ((M_2, M_1)^i)_{M_1},~(M_2,M_1)^{i+1} = (M_1,M_2)^i_{M_2}.$$
Here, for $H\leq G$, $H_G$ denotes $\bigcap_{g\in G}gHg^{-1}$. Denote by $\Pi$ the set of all triples $(G,M_1,M_2)$ such that $G$ is a finite group, $M_1$ and $M_2$ are distinct conjugate maximal subgroups of $G$, $(M_1)_G=(M_2)_G=1$, and $1 < |(M_1,M_2)^{2}| \leq |(M_2,M_1)^{2}|$. The triples $(G,M_1,M_2)$ and $(G',M'_1,M'_2)$ from $\Pi$ are equivalent if there exists an isomorphism from $G$ to $G'$ mapping $M_1$ to $M'_1$ and $M_2$ to $M'_2$. The present paper is a continuation of the investigations by A.S. Kondrat'ev and V.I. Trofimov on a description of the set $\Pi$. It is obtained the description up to equivalence all triples $(G,M_1,M_2)$ from $\Pi$ in the case when $G$ is a finite simple group of Lie type $G_2$, $F_4$ or $E_6$, and $M_1$ is a parabolic maximal subgroup of $G$.
Keywords: finite simple group of Lie type, primitive parabolic permutation representation, maximal subgroup, mutual cores, strong version of Sims conjecture.
Funding agency Grant number
Russian Science Foundation 14-11-00061-П
Received October 1, 2018, published December 7, 2018
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. V. Korableva, “A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$”, Sib. Èlektron. Mat. Izv., 15 (2018), 1595–1604
Citation in format AMSBIB
\Bibitem{Kor18}
\by V.~V.~Korableva
\paper A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 1595--1604
\mathnet{http://mi.mathnet.ru/semr1017}
\crossref{https://doi.org/10.33048/semi.2018.15.132}
Linking options:
  • https://www.mathnet.ru/eng/semr1017
  • https://www.mathnet.ru/eng/semr/v15/p1595
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:333
    Full-text PDF :131
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024