Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 1530–1552
DOI: https://doi.org/10.33048/semi.2018.15.127
(Mi semr1012)
 

Probability theory and mathematical statistics

On sufficient conditions for a Gaussian approximation of kernel estimates for distribution densities

A. S. Kartashova, A. I. Sakhanenkob

a Novosibirsk State University, 2, Lyapunov st., Novosibirsk, 630090, Russia
b Sobolev Institute of Mathematics, 4, pr. Koptyuga, Novosibirsk, 630090, Russia
References:
Abstract: Recently E. Gine, V. Koltchinskii and L. Sakhanenko (Ann. Probab., 2004) investigated necessary and sufficient conditions for weak convergence to the double exponential distribution of a normalized random variable $ \sup\nolimits_{t \in \mathbb{R}} \left | \psi(t) (f_n(t) - \mathbf{E} f_n (t)) \right | $ with some weight function $\psi(t)$, where $f_n$ is a kernel density estimator. The proof of their results consists of a large number of technically difficult stages and uses more than fifteen bulky assumptions. In this work we prove that sufficiency of convergence can be obtained under simpler and wider assumptions.
Keywords: kernel density estimators, brownian motion, function of bounded variation.
Funding agency Grant number
Russian Science Foundation 17-11-01173
The work is supported by Russian Science Foundation (project No. 17-11-01173).
Received September 26, 2018, published December 3, 2018
Bibliographic databases:
Document Type: Article
UDC: 519.21
MSC: 62G07
Language: English
Citation: A. S. Kartashov, A. I. Sakhanenko, “On sufficient conditions for a Gaussian approximation of kernel estimates for distribution densities”, Sib. Èlektron. Mat. Izv., 15 (2018), 1530–1552
Citation in format AMSBIB
\Bibitem{KarSak18}
\by A.~S.~Kartashov, A.~I.~Sakhanenko
\paper On sufficient conditions for a Gaussian approximation of kernel estimates for distribution densities
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 1530--1552
\mathnet{http://mi.mathnet.ru/semr1012}
\crossref{https://doi.org/10.33048/semi.2018.15.127}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454860200067}
Linking options:
  • https://www.mathnet.ru/eng/semr1012
  • https://www.mathnet.ru/eng/semr/v15/p1530
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:279
    Full-text PDF :126
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024