Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 1485–1497
DOI: https://doi.org/10.33048/semi.2018.15.123
(Mi semr1009)
 

This article is cited in 2 scientific papers (total in 2 papers)

Differentical equations, dynamical systems and optimal control

Optimal control of a thin rigid stiffener for a model describing equilibrium of a Timoshenko plate with a crack

N. P. Lazareva, S. Dasb, M. P. Grigoryeva

a North-Eastern Federal University, 48, Kulakovskogo st., Yakutsk, 677000, Russia
b Department of Mathematical Sciences, Indian Institute of Technology (BHU), Banaras Hindu University Campus, Varanasi, 221005, India
Full-text PDF (192 kB) Citations (2)
References:
Abstract: We consider a family of variational problems describing equilibrium of plates containing a crack and rigid thin stiffener on the outer boundary. Nonlinear conditions of the Signorini type on the crack faces are imposed. For this family of problems, we formulate an optimal problem with a control parameter determining the length of the thin rigid stiffener. Meanwhile, a cost functional is specified with the help of an arbitrary continuous functional in the solution space. The existence of the solution to the optimal control problem is proved. We state the continuous dependence of the solutions with respect to the stiffener's size parameter.
Keywords: variational inequality, optimal control problem, nonpenetration condition, crack, energy functional.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.7218.2017/6.7
Received June 14, 2018, published November 26, 2018
Bibliographic databases:
Document Type: Article
UDC: 517.97
MSC: 49J20
Language: Russian
Citation: N. P. Lazarev, S. Das, M. P. Grigoryev, “Optimal control of a thin rigid stiffener for a model describing equilibrium of a Timoshenko plate with a crack”, Sib. Èlektron. Mat. Izv., 15 (2018), 1485–1497
Citation in format AMSBIB
\Bibitem{LazDasGri18}
\by N.~P.~Lazarev, S.~Das, M.~P.~Grigoryev
\paper Optimal control of a thin rigid stiffener for a model describing
equilibrium of a Timoshenko plate with a crack
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 1485--1497
\mathnet{http://mi.mathnet.ru/semr1009}
\crossref{https://doi.org/10.33048/semi.2018.15.123}
Linking options:
  • https://www.mathnet.ru/eng/semr1009
  • https://www.mathnet.ru/eng/semr/v15/p1485
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :151
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024