Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2021, Volume 76, Issue 1, Pages 91–175
DOI: https://doi.org/10.1070/RM9937
(Mi rm9937)
 

This article is cited in 6 scientific papers (total in 6 papers)

Newton polytopes and tropical geometry

B. Ya. Kazarnovskiia, A. G. Khovanskiibc, A. I. Esterovd

a Institute for Information Transmission Problems of the Russian Academy of Sciences
b Independent University of Moscow
c University of Toronto, Toronto, Canada
d National Research University Higher School of Economics
References:
Abstract: The practice of bringing together the concepts of ‘Newton polytopes’, ‘toric varieties’, ‘tropical geometry’, and ‘Gröbner bases’ has led to the formation of stable and mutually beneficial connections between algebraic geometry and convex geometry. This survey is devoted to the current state of the area of mathematics that describes the interaction and applications of these concepts.
Bibliography: 68 titles.
Keywords: family of algebraic varieties, Newton polytope, ring of conditions, toric variety, tropical geometry, mixed volume, exponential sum.
Funding agency Grant number
Canadian Grant 156833-17
Russian Foundation for Basic Research 20-01-00579
The second author was supported by Canadian grant no. 156833-17. The third author was supported by the Russian Foundation for Basic Research (grant no. 20-01-00579).
Received: 25.11.2019
Bibliographic databases:
Document Type: Article
UDC: 512.7+514.17
MSC: Primary 14M15, 14Txx; Secondary 14C17
Language: English
Original paper language: Russian
Citation: B. Ya. Kazarnovskii, A. G. Khovanskii, A. I. Esterov, “Newton polytopes and tropical geometry”, Russian Math. Surveys, 76:1 (2021), 91–175
Citation in format AMSBIB
\Bibitem{KazKhoEst21}
\by B.~Ya.~Kazarnovskii, A.~G.~Khovanskii, A.~I.~Esterov
\paper Newton polytopes and tropical geometry
\jour Russian Math. Surveys
\yr 2021
\vol 76
\issue 1
\pages 91--175
\mathnet{http://mi.mathnet.ru//eng/rm9937}
\crossref{https://doi.org/10.1070/RM9937}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223938}
\zmath{https://zbmath.org/?q=an:1476.14087}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021RuMaS..76...91K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000701440000001}
\elib{https://elibrary.ru/item.asp?id=46783923}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85106907025}
Linking options:
  • https://www.mathnet.ru/eng/rm9937
  • https://doi.org/10.1070/RM9937
  • https://www.mathnet.ru/eng/rm/v76/i1/p95
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:797
    Russian version PDF:326
    English version PDF:65
    Russian version HTML:297
    References:70
    First page:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024