|
This article is cited in 11 scientific papers (total in 11 papers)
On the tensor rank of multiplication in finite extensions of finite fields and related issues in algebraic geometry
S. Balleta, J. Pieltantb, M. Rambaudc, H. Randriambololonad, R. Rollanda, J. Chauminee a Aix-Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille, Marseille, France
b Équipe en émergence Sécurité-Défense, Conservatoire National des Arts et Métiers,
Paris, France
c LTCI, Télécom ParisTech, Institut Polytechnique de Paris, Paris, France
d Laboratoire de Cryptographie, Agence Nationale de Sécurité des Systèmes d'Information, Paris, France
e Laboratoire Géométrie Algébrique et
Applications à la Théorie de l'Information,
Université de la Polynésie Française,
Tahiti, France
Abstract:
In this paper, we give a survey of the known results concerning the tensor rank of multiplication in finite extensions of finite fields, enriched with some unpublished recent results, and we analyze these to enhance the qualitative understanding of the research area. In particular, we identify and clarify certain partially proved results and emphasise links with open problems in number theory, algebraic geometry, and coding theory.
Bibliography: 92 titles.
Keywords:
finite field, tensor rank of multiplication, function field.
Received: 17.09.2019
Citation:
S. Ballet, J. Pieltant, M. Rambaud, H. Randriambololona, R. Rolland, J. Chaumine, “On the tensor rank of multiplication in finite extensions of finite fields and related issues in algebraic geometry”, Russian Math. Surveys, 76:1 (2021), 29–89
Linking options:
https://www.mathnet.ru/eng/rm9928https://doi.org/10.1070/RM9928 https://www.mathnet.ru/eng/rm/v76/i1/p31
|
Statistics & downloads: |
Abstract page: | 389 | Russian version PDF: | 128 | English version PDF: | 46 | Russian version HTML: | 150 | References: | 47 | First page: | 19 |
|