Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2019, Volume 74, Issue 5, Pages 953–955
DOI: https://doi.org/10.1070/RM9908
(Mi rm9908)
 

This article is cited in 2 scientific papers (total in 2 papers)

Brief Communications

Minimal embeddings of integrable processes in a Brownian motion

A. A. Gushchinab, M. A. Urusovc

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b National Research University Higher School of Economics, Moscow
c University of Duisburg-Essen, Essen, Germany
References:
Received: 23.08.2019
Bibliographic databases:
Document Type: Article
MSC: 60J65, 60G44, 60G48
Language: English
Original paper language: Russian
Citation: A. A. Gushchin, M. A. Urusov, “Minimal embeddings of integrable processes in a Brownian motion”, Russian Math. Surveys, 74:5 (2019), 953–955
Citation in format AMSBIB
\Bibitem{GusUru19}
\by A.~A.~Gushchin, M.~A.~Urusov
\paper Minimal embeddings of integrable processes in a~Brownian motion
\jour Russian Math. Surveys
\yr 2019
\vol 74
\issue 5
\pages 953--955
\mathnet{http://mi.mathnet.ru//eng/rm9908}
\crossref{https://doi.org/10.1070/RM9908}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017582}
\zmath{https://zbmath.org/?q=an:1441.60063}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019RuMaS..74..953G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000510641200008}
\elib{https://elibrary.ru/item.asp?id=43254067}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082481560}
Linking options:
  • https://www.mathnet.ru/eng/rm9908
  • https://doi.org/10.1070/RM9908
  • https://www.mathnet.ru/eng/rm/v74/i5/p185
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:438
    Russian version PDF:47
    English version PDF:32
    References:58
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024